forked from TheAlgorithms/JavaScript
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Mandelbrot.js
157 lines (144 loc) · 5.62 KB
/
Mandelbrot.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/**
* Method to generate the image of the Mandelbrot set.
*
* Two types of coordinates are used: image-coordinates that refer to the pixels and figure-coordinates that refer to
* the complex numbers inside and outside the Mandelbrot set. The figure-coordinates in the arguments of this method
* determine which section of the Mandelbrot set is viewed. The main area of the Mandelbrot set is roughly between
* "-1.5 < x < 0.5" and "-1 < y < 1" in the figure-coordinates.
*
* The Mandelbrot set is the set of complex numbers "c" for which the series "z_(n+1) = z_n * z_n + c" does not diverge,
* i.e. remains bounded. Thus, a complex number "c" is a member of the Mandelbrot set if, when starting with "z_0 = 0"
* and applying the iteration repeatedly, the absolute value of "z_n" remains bounded for all "n > 0". Complex numbers
* can be written as "a + b*i": "a" is the real component, usually drawn on the x-axis, and "b*i" is the imaginary
* component, usually drawn on the y-axis. Most visualizations of the Mandelbrot set use a color-coding to indicate
* after how many steps in the series the numbers outside the set cross the divergence threshold. Images of the
* Mandelbrot set exhibit an elaborate and infinitely complicated boundary that reveals progressively ever-finer
* recursive detail at increasing magnifications, making the boundary of the Mandelbrot set a fractal curve.
*
* (description adapted from https://en.wikipedia.org/wiki/Mandelbrot_set)
* @see https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set
*
* @param {number} imageWidth The width of the rendered image.
* @param {number} imageHeight The height of the rendered image.
* @param {number} figureCenterX The x-coordinate of the center of the figure.
* @param {number} figureCenterY The y-coordinate of the center of the figure.
* @param {number} figureWidth The width of the figure.
* @param {number} maxStep Maximum number of steps to check for divergent behavior.
* @param {boolean} useDistanceColorCoding Render in color or black and white.
* @return {object} The RGB-data of the rendered Mandelbrot set.
*/
export function getRGBData(
imageWidth = 800,
imageHeight = 600,
figureCenterX = -0.6,
figureCenterY = 0,
figureWidth = 3.2,
maxStep = 50,
useDistanceColorCoding = true
) {
if (imageWidth <= 0) {
throw new Error('imageWidth should be greater than zero')
}
if (imageHeight <= 0) {
throw new Error('imageHeight should be greater than zero')
}
if (maxStep <= 0) {
throw new Error('maxStep should be greater than zero')
}
const rgbData = []
const figureHeight = (figureWidth / imageWidth) * imageHeight
// loop through the image-coordinates
for (let imageX = 0; imageX < imageWidth; imageX++) {
rgbData[imageX] = []
for (let imageY = 0; imageY < imageHeight; imageY++) {
// determine the figure-coordinates based on the image-coordinates
const figureX = figureCenterX + (imageX / imageWidth - 0.5) * figureWidth
const figureY =
figureCenterY + (imageY / imageHeight - 0.5) * figureHeight
const distance = getDistance(figureX, figureY, maxStep)
// color the corresponding pixel based on the selected coloring-function
rgbData[imageX][imageY] = useDistanceColorCoding
? colorCodedColorMap(distance)
: blackAndWhiteColorMap(distance)
}
}
return rgbData
}
/**
* Black and white color-coding that ignores the relative distance.
*
* The Mandelbrot set is black, everything else is white.
*
* @param {number} distance Distance until divergence threshold
* @return {object} The RGB-value corresponding to the distance.
*/
function blackAndWhiteColorMap(distance) {
return distance >= 1 ? [0, 0, 0] : [255, 255, 255]
}
/**
* Color-coding taking the relative distance into account.
*
* The Mandelbrot set is black.
*
* @param {number} distance Distance until divergence threshold
* @return {object} The RGB-value corresponding to the distance.
*/
function colorCodedColorMap(distance) {
if (distance >= 1) {
return [0, 0, 0]
} else {
// simplified transformation of HSV to RGB
// distance determines hue
const hue = 360 * distance
const saturation = 1
const val = 255
const hi = Math.floor(hue / 60) % 6
const f = hue / 60 - Math.floor(hue / 60)
const v = val
const p = 0
const q = Math.floor(val * (1 - f * saturation))
const t = Math.floor(val * (1 - (1 - f) * saturation))
switch (hi) {
case 0:
return [v, t, p]
case 1:
return [q, v, p]
case 2:
return [p, v, t]
case 3:
return [p, q, v]
case 4:
return [t, p, v]
default:
return [v, p, q]
}
}
}
/**
* Return the relative distance (ratio of steps taken to maxStep) after which the complex number
* constituted by this x-y-pair diverges.
*
* Members of the Mandelbrot set do not diverge so their distance is 1.
*
* @param {number} figureX The x-coordinate within the figure.
* @param {number} figureY The y-coordinate within the figure.
* @param {number} maxStep Maximum number of steps to check for divergent behavior.
* @return {number} The relative distance as the ratio of steps taken to maxStep.
*/
function getDistance(figureX, figureY, maxStep) {
let a = figureX
let b = figureY
let currentStep = 0
for (let step = 0; step < maxStep; step++) {
currentStep = step
const aNew = a * a - b * b + figureX
b = 2 * a * b + figureY
a = aNew
// divergence happens for all complex number with an absolute value
// greater than 4 (= divergence threshold)
if (a * a + b * b > 4) {
break
}
}
return currentStep / (maxStep - 1)
}