The code was tested on Ubuntu 16.04, with Anaconda Python 3.6, CUDA 10.0, and PyTorch v1.0. It should be compatible with PyTorch <=1.4 and python >=0.4 (you will need to switch DCNv2 version for PyTorch <1.0). After installing Anaconda:
-
[Optional but highly recommended] create a new conda environment.
conda create --name CenterTrack python=3.6
And activate the environment.
conda activate CenterTrack
-
Install PyTorch:
conda install pytorch torchvision -c pytorch
-
Install COCOAPI:
pip install cython; pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
-
Clone this repo:
CenterTrack_ROOT=/path/to/clone/CenterTrack git clone --recursive https://github.com/xingyizhou/CenterTrack $CenterTrack_ROOT
You can manually install the submodules if you forget
--recursive
. -
Install the requirements
pip install -r requirements.txt
-
Compile deformable convolutional (from DCNv2).
cd $CenterTrack_ROOT/src/lib/model/networks/ # git clone https://github.com/CharlesShang/DCNv2/ # clone if it is not automatically downloaded by `--recursive`. cd DCNv2 ./make.sh
-
Download pertained models for monocular 3D tracking, 80-category tracking, or pose tracking and move them to
$CenterTrack_ROOT/models/
. More models can be found in Model zoo.