Differentiable dynamic range controller in PyTorch.
pip install torchcomp
This function calculates the gain reduction
def compexp_gain(
x_rms: torch.Tensor,
comp_thresh: Union[torch.Tensor, float],
comp_ratio: Union[torch.Tensor, float],
exp_thresh: Union[torch.Tensor, float],
exp_ratio: Union[torch.Tensor, float],
at: Union[torch.Tensor, float],
rt: Union[torch.Tensor, float],
) -> torch.Tensor:
"""Compressor-Expander gain function.
Args:
x_rms (torch.Tensor): Input signal RMS.
comp_thresh (torch.Tensor): Compressor threshold in dB.
comp_ratio (torch.Tensor): Compressor ratio.
exp_thresh (torch.Tensor): Expander threshold in dB.
exp_ratio (torch.Tensor): Expander ratio.
at (torch.Tensor): Attack time.
rt (torch.Tensor): Release time.
Shape:
- x_rms: :math:`(B, T)` where :math:`B` is the batch size and :math:`T` is the number of samples.
- comp_thresh: :math:`(B,)` or a scalar.
- comp_ratio: :math:`(B,)` or a scalar.
- exp_thresh: :math:`(B,)` or a scalar.
- exp_ratio: :math:`(B,)` or a scalar.
- at: :math:`(B,)` or a scalar.
- rt: :math:`(B,)` or a scalar.
"""
Note:
x_rms
should be non-negative.
You can calculate it using avg
.
graph TB
input((x))
output((g))
amp2db[amp2db]
db2amp[db2amp]
min[Min]
delay[z^-1]
zero( 0 )
input --> amp2db --> neg["*(-1)"] --> plusCT["+CT"] & plusET["+ET"]
plusCT --> multCS["*(1 - 1/CR)"]
plusET --> multES["*(1 - 1/ER)"]
zero & multCS & multES --> min --> db2amp
db2amp & delay --> ifelse{<}
output --> delay --> multATT["*(1 - AT)"] & multRTT["*(1 - RT)"]
subgraph Compressor
ifelse -->|yes| multAT["*AT"]
subgraph Attack
multAT & multATT --> plus1(("+"))
end
ifelse -->|no| multRT["*RT"]
subgraph Release
multRT & multRTT --> plus2(("+"))
end
end
plus1 & plus2 --> output
This function calculates the gain reduction
def limiter_gain(
x: torch.Tensor,
threshold: torch.Tensor,
at: torch.Tensor,
rt: torch.Tensor,
) -> torch.Tensor:
"""Limiter gain function.
This implementation use the same attack and release time for level detection and gain smoothing.
Args:
x (torch.Tensor): Input signal.
threshold (torch.Tensor): Limiter threshold in dB.
at (torch.Tensor): Attack time.
rt (torch.Tensor): Release time.
Shape:
- x: :math:`(B, T)` where :math:`B` is the batch size and :math:`T` is the number of samples.
- threshold: :math:`(B,)` or a scalar.
- at: :math:`(B,)` or a scalar.
- rt: :math:`(B,)` or a scalar.
"""
graph TB
input((x))
output((g))
peak((x_peak))
abs[abs]
delay[z^-1]
zero( 0 )
ifelse1{>}
ifelse2{<}
input --> abs --> ifelse1
subgraph Peak detector
ifelse1 -->|yes| multAT["*AT"]
subgraph at1 [Attack]
multAT & multATT --> plus1(("+"))
end
ifelse1 -->|no| multRT["*RT"]
subgraph rt1 [Release]
multRT & multRTT --> plus2(("+"))
end
end
plus1 & plus2 --> peak
peak --> delay --> multATT["*(1 - AT)"] & multRTT["*(1 - RT)"] & ifelse1
peak --> amp2db[amp2db] --> neg["*(-1)"] --> plusT["+T"]
zero & plusT --> min[Min] --> db2amp[db2amp] --> ifelse2{<}
subgraph gain smoothing
ifelse2 -->|yes| multAT2["*AT"]
subgraph at2 [Attack]
multAT2 & multATT2 --> plus3(("+"))
end
ifelse2 -->|no| multRT2["*RT"]
subgraph rt2 [Release]
multRT2 & multRTT2 --> plus4(("+"))
end
end
output --> delay2[z^-1] --> multATT2["*(1 - AT)"] & multRTT2["*(1 - RT)"] & ifelse2
plus3 & plus4 --> output
def avg(rms: torch.Tensor, avg_coef: Union[torch.Tensor, float]):
"""Compute the running average of a signal.
Args:
rms (torch.Tensor): Input signal.
avg_coef (torch.Tensor): Coefficient for the average RMS.
Shape:
- rms: :math:`(B, T)` where :math:`B` is the batch size and :math:`T` is the number of samples.
- avg_coef: :math:`(B,)` or a scalar.
"""
- CUDA acceleration in Numba
- PyTorch CPP extension
- Native CUDA extension
- Forward mode autograd
- Examples
If you find this repository useful in your research, please cite our work with the following BibTex entry:
@inproceedings{ycy2024diffapf,
title={Differentiable All-pole Filters for Time-varying Audio Systems},
author={Chin-Yun Yu and Christopher Mitcheltree and Alistair Carson and Stefan Bilbao and Joshua D. Reiss and György Fazekas},
booktitle={International Conference on Digital Audio Effects (DAFx)},
year={2024},
pages={345--352},
}