diff --git a/404.html b/404.html index 5fbdd3c..c11db56 100755 --- a/404.html +++ b/404.html @@ -286,7 +286,7 @@
  • - + Tech @@ -903,27 +903,6 @@ -
  • - - - - - Connectionist Temporal Classification (CTC) - - - - -
  • - - - - - - - - - -
  • diff --git a/Electrical Engineering/PCB Design/lecture1/index.html b/Electrical Engineering/PCB Design/lecture1/index.html index 0bfe00e..4ed0b15 100755 --- a/Electrical Engineering/PCB Design/lecture1/index.html +++ b/Electrical Engineering/PCB Design/lecture1/index.html @@ -301,7 +301,7 @@
  • - + Tech @@ -979,27 +979,6 @@ -
  • - - - - - Connectionist Temporal Classification (CTC) - - - - -
  • - - - - - - - - - -
  • diff --git "a/Electrical Engineering/\347\224\265\346\260\224\346\216\247\345\210\266\346\212\200\346\234\257/1\344\273\213\347\273\215/index.html" "b/Electrical Engineering/\347\224\265\346\260\224\346\216\247\345\210\266\346\212\200\346\234\257/1\344\273\213\347\273\215/index.html" index e3bd667..e5ebb5e 100755 --- "a/Electrical Engineering/\347\224\265\346\260\224\346\216\247\345\210\266\346\212\200\346\234\257/1\344\273\213\347\273\215/index.html" +++ "b/Electrical Engineering/\347\224\265\346\260\224\346\216\247\345\210\266\346\212\200\346\234\257/1\344\273\213\347\273\215/index.html" @@ -301,7 +301,7 @@
  • - + Tech @@ -1054,27 +1054,6 @@ -
  • - - - - - Connectionist Temporal Classification (CTC) - - - - -
  • - - - - - - - - - -
  • diff --git "a/Electrical Engineering/\347\224\265\346\260\224\346\216\247\345\210\266\346\212\200\346\234\257/2\347\233\264\346\265\201\347\224\265\346\234\272/index.html" "b/Electrical Engineering/\347\224\265\346\260\224\346\216\247\345\210\266\346\212\200\346\234\257/2\347\233\264\346\265\201\347\224\265\346\234\272/index.html" index a816e3e..627aebe 100755 --- "a/Electrical Engineering/\347\224\265\346\260\224\346\216\247\345\210\266\346\212\200\346\234\257/2\347\233\264\346\265\201\347\224\265\346\234\272/index.html" +++ "b/Electrical Engineering/\347\224\265\346\260\224\346\216\247\345\210\266\346\212\200\346\234\257/2\347\233\264\346\265\201\347\224\265\346\234\272/index.html" @@ -301,7 +301,7 @@
  • - + Tech @@ -970,27 +970,6 @@ -
  • - - - - - Connectionist Temporal Classification (CTC) - - - - -
  • - - - - - - - - - -
  • diff --git "a/Electrical Engineering/\347\224\265\346\260\224\346\216\247\345\210\266\346\212\200\346\234\257/3\345\217\230\345\216\213\345\231\250/index.html" "b/Electrical Engineering/\347\224\265\346\260\224\346\216\247\345\210\266\346\212\200\346\234\257/3\345\217\230\345\216\213\345\231\250/index.html" index 1d932dc..f6f781f 100755 --- "a/Electrical Engineering/\347\224\265\346\260\224\346\216\247\345\210\266\346\212\200\346\234\257/3\345\217\230\345\216\213\345\231\250/index.html" +++ "b/Electrical Engineering/\347\224\265\346\260\224\346\216\247\345\210\266\346\212\200\346\234\257/3\345\217\230\345\216\213\345\231\250/index.html" @@ -301,7 +301,7 @@
  • - + Tech @@ -1111,27 +1111,6 @@ -
  • - - - - - Connectionist Temporal Classification (CTC) - - - - -
  • - - - - - - - - - -
  • diff --git "a/Electrical Engineering/\347\224\265\346\260\224\346\216\247\345\210\266\346\212\200\346\234\257/4\344\272\244\346\265\201\347\224\265\346\234\272/index.html" "b/Electrical Engineering/\347\224\265\346\260\224\346\216\247\345\210\266\346\212\200\346\234\257/4\344\272\244\346\265\201\347\224\265\346\234\272/index.html" index edc7110..7952dfa 100755 --- "a/Electrical Engineering/\347\224\265\346\260\224\346\216\247\345\210\266\346\212\200\346\234\257/4\344\272\244\346\265\201\347\224\265\346\234\272/index.html" +++ "b/Electrical Engineering/\347\224\265\346\260\224\346\216\247\345\210\266\346\212\200\346\234\257/4\344\272\244\346\265\201\347\224\265\346\234\272/index.html" @@ -301,7 +301,7 @@
  • - + Tech @@ -1255,27 +1255,6 @@ -
  • - - - - - Connectionist Temporal Classification (CTC) - - - - -
  • - - - - - - - - - -
  • diff --git "a/Electrical Engineering/\347\224\265\346\260\224\346\216\247\345\210\266\346\212\200\346\234\257/5\347\224\265\346\234\272\346\216\247\345\210\266/index.html" "b/Electrical Engineering/\347\224\265\346\260\224\346\216\247\345\210\266\346\212\200\346\234\257/5\347\224\265\346\234\272\346\216\247\345\210\266/index.html" index bec3e57..b7a9eac 100755 --- "a/Electrical Engineering/\347\224\265\346\260\224\346\216\247\345\210\266\346\212\200\346\234\257/5\347\224\265\346\234\272\346\216\247\345\210\266/index.html" +++ "b/Electrical Engineering/\347\224\265\346\260\224\346\216\247\345\210\266\346\212\200\346\234\257/5\347\224\265\346\234\272\346\216\247\345\210\266/index.html" @@ -301,7 +301,7 @@
  • - + Tech @@ -1021,27 +1021,6 @@ -
  • - - - - - Connectionist Temporal Classification (CTC) - - - - -
  • - - - - - - - - - -
  • diff --git a/Notes/test/index.html b/Notes/test/index.html index 68c07a6..417cef8 100755 --- a/Notes/test/index.html +++ b/Notes/test/index.html @@ -299,7 +299,7 @@
  • - + Tech @@ -977,27 +977,6 @@ -
  • - - - - - Connectionist Temporal Classification (CTC) - - - - -
  • - - - - - - - - - -
  • diff --git "a/Notes/\344\277\241\346\201\257\350\256\272\344\270\216\347\274\226\347\240\201/2\347\246\273\346\225\243\344\277\241\346\272\220\345\217\212\345\205\266\344\277\241\346\201\257\346\265\213\345\272\246/index.html" "b/Notes/\344\277\241\346\201\257\350\256\272\344\270\216\347\274\226\347\240\201/2\347\246\273\346\225\243\344\277\241\346\272\220\345\217\212\345\205\266\344\277\241\346\201\257\346\265\213\345\272\246/index.html" index e1b59c1..053f7f7 100755 --- "a/Notes/\344\277\241\346\201\257\350\256\272\344\270\216\347\274\226\347\240\201/2\347\246\273\346\225\243\344\277\241\346\272\220\345\217\212\345\205\266\344\277\241\346\201\257\346\265\213\345\272\246/index.html" +++ "b/Notes/\344\277\241\346\201\257\350\256\272\344\270\216\347\274\226\347\240\201/2\347\246\273\346\225\243\344\277\241\346\272\220\345\217\212\345\205\266\344\277\241\346\201\257\346\265\213\345\272\246/index.html" @@ -299,7 +299,7 @@
  • - + Tech @@ -1001,27 +1001,6 @@ -
  • - - - - - Connectionist Temporal Classification (CTC) - - - - -
  • - - - - - - - - - -
  • diff --git "a/Notes/\346\234\272\345\231\250\344\272\272\346\212\200\346\234\257\344\270\216\345\256\236\350\267\265/lab3/index.html" "b/Notes/\346\234\272\345\231\250\344\272\272\346\212\200\346\234\257\344\270\216\345\256\236\350\267\265/lab3/index.html" index 201c863..b0d878b 100755 --- "a/Notes/\346\234\272\345\231\250\344\272\272\346\212\200\346\234\257\344\270\216\345\256\236\350\267\265/lab3/index.html" +++ "b/Notes/\346\234\272\345\231\250\344\272\272\346\212\200\346\234\257\344\270\216\345\256\236\350\267\265/lab3/index.html" @@ -299,7 +299,7 @@
  • - + Tech @@ -995,27 +995,6 @@ -
  • - - - - - Connectionist Temporal Classification (CTC) - - - - -
  • - - - - - - - - - -
  • diff --git "a/Notes/\346\234\272\345\231\250\344\272\272\346\212\200\346\234\257\344\270\216\345\256\236\350\267\265/lab4/index.html" "b/Notes/\346\234\272\345\231\250\344\272\272\346\212\200\346\234\257\344\270\216\345\256\236\350\267\265/lab4/index.html" index 95278dc..1cbc046 100755 --- "a/Notes/\346\234\272\345\231\250\344\272\272\346\212\200\346\234\257\344\270\216\345\256\236\350\267\265/lab4/index.html" +++ "b/Notes/\346\234\272\345\231\250\344\272\272\346\212\200\346\234\257\344\270\216\345\256\236\350\267\265/lab4/index.html" @@ -16,7 +16,7 @@ - + @@ -299,7 +299,7 @@
  • - + Tech @@ -986,27 +986,6 @@ -
  • - - - - - Connectionist Temporal Classification (CTC) - - - - -
  • - - - - - - - - - -
  • diff --git a/Tech/CTC/index.html b/Tech/CTC/index.html deleted file mode 100755 index e24face..0000000 --- a/Tech/CTC/index.html +++ /dev/null @@ -1,1288 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - Connectionist Temporal Classification (CTC) - Chenxu's Blog - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    - - - - Skip to content - - -
    -
    - -
    - - - - -
    - - -
    - -
    - - - - - - - - - -
    -
    - - - -
    -
    -
    - - - - - - - -
    -
    -
    - - - -
    -
    -
    - - - -
    -
    -
    - - - -
    -
    - - - - - - - -

    Connectionist Temporal Classification (CTC)

    -

    Sqe2Seq model

    -
      -
    • seq in and seq out, without the notion of "alignment"
    • -
    -

    Case 1: With Alignment

    -

    The input and output sequences happen in the same order. Although they may be aynchronous.

    -

    many2one

    -

    As is shown in the figure, the sequence of inputs produces a single output.

    -

    How do we train a CTC model

    -
      -
    • We need to train a model that can predict the output sequence given the input sequence.
    • -
    • First, we get a output of result and its corresponding time, and then, we assume that each output corresponds to that time and before last output.
    • -
    -

    It brings a problem, if we have a sequence which has a lot of noise, and we may have make a clear output corresponds to the noise. Which is not what we want.

    -
    -

    我想在这个地方能不能采取一种策略,就是对音频进行随机的切片,然后抹除掉一切切片的信息,然后比对抹除前后的输出,当这个抹除后的结果和抹除前的结果差别比较大的话,就证明这个部分是重要的,反之,则这个部分没什么意义,就当作噪声处理。

    -

    所以我们的模型可以得到输出后的结果,以及噪声的区间,同时还有一个噪声的权重,这样我们就可以得到一个更加准确的输出。

    -
    - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - -
    - - - -
    - -
    - - -
    - -
    -
    -
    -
    - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/Tech/conda&pip/index.html b/Tech/conda&pip/index.html index 31a2b39..f839310 100755 --- a/Tech/conda&pip/index.html +++ b/Tech/conda&pip/index.html @@ -13,7 +13,7 @@ - + @@ -299,7 +299,7 @@
  • - + Tech @@ -917,27 +917,6 @@ - - -
  • - - - - - Connectionist Temporal Classification (CTC) - - - - -
  • - - - - - - - - diff --git "a/Tech/\345\234\250\346\202\250\347\232\204\344\270\252\344\272\272\345\215\232\345\256\242\344\270\255\346\267\273\345\212\240pdf\346\226\207\344\273\266/index.html" "b/Tech/\345\234\250\346\202\250\347\232\204\344\270\252\344\272\272\345\215\232\345\256\242\344\270\255\346\267\273\345\212\240pdf\346\226\207\344\273\266/index.html" index da456f2..8d41d63 100755 --- "a/Tech/\345\234\250\346\202\250\347\232\204\344\270\252\344\272\272\345\215\232\345\256\242\344\270\255\346\267\273\345\212\240pdf\346\226\207\344\273\266/index.html" +++ "b/Tech/\345\234\250\346\202\250\347\232\204\344\270\252\344\272\272\345\215\232\345\256\242\344\270\255\346\267\273\345\212\240pdf\346\226\207\344\273\266/index.html" @@ -297,7 +297,7 @@
  • - + Tech @@ -917,27 +917,6 @@ -
  • - - - - - Connectionist Temporal Classification (CTC) - - - - -
  • - - - - - - - - - -
  • diff --git a/index.html b/index.html index eaca3e0..623e2f1 100755 --- a/index.html +++ b/index.html @@ -297,7 +297,7 @@
  • - + Tech @@ -924,27 +924,6 @@ -
  • - - - - - Connectionist Temporal Classification (CTC) - - - - -
  • - - - - - - - - - -
  • diff --git a/search/search_index.json b/search/search_index.json index ae77f74..0b173cb 100755 --- a/search/search_index.json +++ b/search/search_index.json @@ -1 +1 @@ -{"config":{"lang":["en"],"separator":"[\\s\\-]+","pipeline":["stopWordFilter"]},"docs":[{"location":"","title":"WELCOME","text":"

    Welcome

    Welcome to my blog! This blog is still under construction, so there may be some bugs. If you find any bugs, please let me know. Thank you!

    Hello, I'm Chenxu, a college student from China. I'm interested in programming, open source, and technology. I'm currently study electrical engineering at Zhejiang University.

    I'm a big fan of Python, and I'm also familiar with C/C++ and JavaScript. I'm also interested in web development. Recently, I'm learning about machine learning and deep learning, mainly related to dysfluency speech.

    Maybe you are interested in my projects, you can find them on GitHub.

    Here, I will share my thoughts, projects, and some interesting things. I hope you can enjoy it.

    Recently working on "},{"location":"Electrical%20Engineering/PCB%20Design/lecture1/","title":"PCB\u8bbe\u8ba1\u57fa\u7840","text":""},{"location":"Electrical%20Engineering/PCB%20Design/lecture1/#pcb\u7ed3\u6784\u4e0e\u7ec4\u6210","title":"PCB\u7ed3\u6784\u4e0e\u7ec4\u6210","text":"

    PCB\u677f\u5c31\u662f\u5370\u5236\u7535\u8def\u677f\uff0c\u53c8\u79f0\u5370\u5237\u7535\u8def\u677f\uff0c\u662f\u7535\u5b50\u5143\u5668\u4ef6\u4e0e\u7535\u6c14\u8fde\u63a5\u7684\u63d0\u4f9b\u8005\u3002

    PCB\u6839\u636e\u5176\u57fa\u677f\u6750\u6599\u7684\u4e0d\u540c\u800c\u4e0d\u540c\uff0c\u6709\u9ad8\u9891\u5fae\u6ce2\u677f\uff0c\u91d1\u5c5e\u57fa\u677f\uff0c\u94dd\u57fa\u677f\uff0c\u94c1\u57fa\u677f\uff0c\u94dc\u57fa\u677f\uff0c\u53cc\u9762\u677f\uff0c\u591a\u5c42\u677f\u7b49\u3002

    PCB\u7684\u82f1\u6587\u5168\u79f0\u662fPrinted Circuit Board\u3002\u662f\u91cd\u8981\u7684\u7535\u5b50\u5668\u4ef6\u3002

    Note

    \u6211\u4eec\u4e3b\u8981\u7528\u53cc\u9762\u677f\u3002

    PCB\u7684\u7ed3\u6784\u4e0e\u7ec4\u6210\u4e3b\u8981\u5305\u62ec\uff1a

    "},{"location":"Electrical%20Engineering/PCB%20Design/lecture1/#pcb\u7684\u5c42\u7ea7\u7ed3\u6784","title":"PCB\u7684\u5c42\u7ea7\u7ed3\u6784","text":""},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/1%E4%BB%8B%E7%BB%8D/","title":"\u7535\u8def\u4e0e\u78c1\u8def\u7684\u76f8\u4f3c\u6027","text":""},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/1%E4%BB%8B%E7%BB%8D/#\u78c1\u8def\u4e2d\u7684\u7269\u7406\u91cf","title":"\u78c1\u8def\u4e2d\u7684\u7269\u7406\u91cf","text":"

    \u78c1\u8def\u4e2d\u7684\u7269\u7406\u91cf\uff1a

    \u6e90\u6709\u4ec0\u4e48\u542b\u4e49\uff1f

    graph TD\n    A[\u7535\u52bf] --> B[\u7535\u6d41] --> E[\u7535\u538b\u964d]\n    C[\u78c1\u52bf] --> D[\u78c1\u901a] --> F[\u78c1\u538b\u964d]
    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/1%E4%BB%8B%E7%BB%8D/#\u78c1\u8def\u7684\u57fa\u672c\u5b9a\u5f8b","title":"\u78c1\u8def\u7684\u57fa\u672c\u5b9a\u5f8b","text":""},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/1%E4%BB%8B%E7%BB%8D/#\u5b89\u57f9\u73af\u8def\u5b9a\u5f8b\u5168\u7535\u6d41\u5b9a\u5f8b","title":"\u5b89\u57f9\u73af\u8def\u5b9a\u5f8b\u3001\u5168\u7535\u6d41\u5b9a\u5f8b","text":"\\[ \\oint H \\cdot dl = I \\]"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/1%E4%BB%8B%E7%BB%8D/#\u5b89\u57f9\u5b9a\u5f8b","title":"\u5b89\u57f9\u5b9a\u5f8b","text":"\\[ \\phi=\\frac{F}{R_m}=F\\Lambda_m \\]"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/1%E4%BB%8B%E7%BB%8D/#\u78c1\u8def\u7684\u6b27\u59c6\u5b9a\u5f8b","title":"\u78c1\u8def\u7684\u6b27\u59c6\u5b9a\u5f8b","text":"\\[ R_m =\\rho_m\\frac{l}{A}=\\frac{l}{\\mu A} \\]"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/1%E4%BB%8B%E7%BB%8D/#\u57fa\u5c14\u970d\u592b\u7b2c\u4e00\u5b9a\u5f8b","title":"\u57fa\u5c14\u970d\u592b\u7b2c\u4e00\u5b9a\u5f8b","text":"

    \u5bf9\u4e8e\u78c1\u8def\u4e2d\u67d0\u4e00\u4e2a\u95ed\u5408\u9762\u3002

    \\[ \\sum \\phi = 0 \\]"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/1%E4%BB%8B%E7%BB%8D/#\u57fa\u5c14\u970d\u592b\u7b2c\u4e8c\u5b9a\u5f8b","title":"\u57fa\u5c14\u970d\u592b\u7b2c\u4e8c\u5b9a\u5f8b","text":"

    \u5c01\u95ed\u78c1\u8def\u4e2d

    \\[ \\sum \\phi R_m = \\sum F \\]"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/1%E4%BB%8B%E7%BB%8D/#\u94c1\u78c1\u6750\u6599\u7684\u7279\u6027","title":"\u94c1\u78c1\u6750\u6599\u7684\u7279\u6027","text":""},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/1%E4%BB%8B%E7%BB%8D/#\u78c1\u6ede\u56de\u7ebf","title":"\u78c1\u6ede\u56de\u7ebf","text":"

    \u63cf\u8ff0B-H\u7684\u5173\u7cfb\uff0c\u6709\u4e24\u4e2a\u57fa\u672c\u7279\u6027\uff1a

    \u7535\u538b\\(U\\)\u2192\u7535\u52a8\u52bf\\(E\\)\u2192\u78c1\u901a\\(\\phi\\)\u2192\\(B\\)

    \u7535\u6d41\\(i\\)\u2192\u5168\u7535\u6d41\u5b9a\u5f8b\\(\\sum i\\)\u2192\u78c1\u52bf\\(F\\)\u2192\\(H\\)

    \u6240\u4ee5 $$ \\begin{align} B &= B(u)\\ H &= H(i) \\end{align} $$

    \u901a\u8fc7\u8fd9\u79cd\u903b\u8f91\u53ef\u4ee5\u628a\u78c1\u6ede\u56de\u7ebf\u8f6c\u5316\u6210\u7535\u538b\u548c\u7535\u6d41\u7684\u5173\u7cfb\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/2%E7%9B%B4%E6%B5%81%E7%94%B5%E6%9C%BA/","title":"\u76f4\u6d41\u7535\u673a","text":"

    Note

    \u8fd8\u5728\u5efa\u8bbe\u4e2d\uff0c\u656c\u8bf7\u671f\u5f85\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/2%E7%9B%B4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u672c\u7ae0\u4f5c\u4e1a","title":"\u672c\u7ae0\u4f5c\u4e1a","text":"This browser does not support PDFs"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/","title":"\u53d8\u538b\u5668","text":""},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u53d8\u538b\u5668\u7684\u57fa\u672c\u539f\u7406\u548c\u7ed3\u6784","title":"\u53d8\u538b\u5668\u7684\u57fa\u672c\u539f\u7406\u548c\u7ed3\u6784","text":""},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u53d8\u538b\u5668\u7684\u57fa\u672c\u539f\u7406","title":"\u53d8\u538b\u5668\u7684\u57fa\u672c\u539f\u7406","text":""},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u57fa\u672c\u5de5\u4f5c\u539f\u7406","title":"\u57fa\u672c\u5de5\u4f5c\u539f\u7406","text":"

    \u4ee5\u78c1\u573a\u4e3a\u5a92\u4ecb\uff0c\u901a\u8fc7\u7535\u78c1\u611f\u5e94\u4f5c\u7528\uff0c\u628a\u4e00\u79cd\u7535\u538b\u7684\u4ea4\u6d41\u7535\u8f6c\u5316\u6210\u53e6\u4e00\u79cd\u76f8\u540c\u9891\u7387\u7535\u538b\u7684\u4ea4\u6d41\u7535\u3002

    \u5173\u952e\u8bcd

    \u78c1\u573a\uff0c\u7535\u78c1\u611f\u5e94\uff0c\u7535\u538b\uff0c\u4ea4\u6d41\u7535\uff0c\u76f8\u540c\u9891\u7387

    \u6700\u5173\u952e\u7684\u4e24\u4e2a\u70b9\uff1a

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u53d8\u538b\u5668\u7684\u57fa\u672c\u7ed3\u6784","title":"\u53d8\u538b\u5668\u7684\u57fa\u672c\u7ed3\u6784","text":"

    \u901a\u8fc7\u7535\u5de5\u94a2\u7247\u53e0\u538b\u800c\u6210\u7684\u95ed\u5408\u78c1\u8def

    \u53e0\u7247\u7684\u76ee\u7684\uff1a\u51cf\u5c11\u6da1\u6d41

    \u539f\u8fb9\u7ebf\u5708\uff08\u4e00\u6b21\u4fa7\uff09AX\uff0c\u6b21\u8fb9\u7ebf\u5708\uff08\u4e8c\u6b21\u4fa7\uff09ax\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u53d8\u538b\u5668\u7684\u989d\u5b9a\u503c","title":"\u53d8\u538b\u5668\u7684\u989d\u5b9a\u503c","text":"

    \u4f7f\u7528\u53d8\u538b\u5668\u7684\u65f6\u5019\uff0c\u5fc5\u987b\u6ee1\u8db3\u4e00\u5b9a\u7684\u6761\u4ef6\u3002

    \u8f93\u5165\u7684\u7535\u538b\u548c\u7535\u6d41\u7684\u4e58\u79ef\u3002

    \u4e00\u6b21\u4fa7\uff1a\u8f93\u5165\u7684\u7535\u538b\u3002 \u4e8c\u6b21\u4fa7\uff1a\u4e00\u6b21\u4fa7\u989d\u5b9a\u65f6\uff0c\u8d1f\u8f7d\u7aef\u7a7a\u8f7d\u65f6\u7684\u7535\u538b\uff08\u7535\u52bf\uff09\u3002

    \u4e09\u76f8\u53d8\u538b\u5668\u4e2d\uff0c\u6307\u7684\u662f\u7ebf\u7535\u538b\u3002\uff08\u6240\u6709\u7684\u989d\u5b9a\u53c2\u6570\u6307\u7684\u90fd\u662f\u7ebf\u53c2\u6570\uff09

    \u5355\u76f8\uff1a $$ S_N=U_NI_N $$ \u4e09\u76f8\uff1a $$ S_N=\\sqrt{3}U_NI_N $$

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u53d8\u538b\u5668\u5206\u6790\u7684\u4e24\u4e2a\u57fa\u7840","title":"\u53d8\u538b\u5668\u5206\u6790\u7684\u4e24\u4e2a\u57fa\u7840","text":""},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u7406\u60f3\u53d8\u538b\u5668","title":"\u7406\u60f3\u53d8\u538b\u5668","text":"

    \u53d8\u538b\u5668\u7684\u8fd0\u884c\u8fc7\u7a0b\uff1a

    \u4e00\u6b21\u4fa7\u52a0\u7535\u538b\uff0c\u7535\u6d41\u6d41\u8fc7\u5bfc\u7ebf\uff0c\u56e0\u4e3a\u5bfc\u7ebf\u6709\u7535\u963b\uff0c\u6240\u4ee5\u4ea7\u751f\u94dc\u635f\uff08\u7535\u673a\u5b66\u4e2d\u7684\u4e60\u60ef\u53eb\u6cd5\uff09\u3002

    \u7535\u6d41\u4ea7\u751f\u78c1\u52bf\uff0c\u6240\u4ee5\u5c31\u4f1a\u4ea7\u751f\u4e3b\u78c1\u901a\u548c\u6f0f\u78c1\u901a\uff0c\u800c\u4ea4\u53d8\u7684\u78c1\u901a\u4f1a\u5728\u94c1\u82af\u4e2d\u4ea7\u751f\u6da1\u6d41\uff0c\u8fd9\u5c31\u662f\u94c1\u635f\u3002

    \u4e8c\u6b21\u4fa7\u7684\u7535\u6d41\u6d41\u8fc7\u5bfc\u7ebf\uff0c\u4e5f\u4f1a\u4ea7\u751f\u94dc\u635f\u3002

    \u603b\u7ed3

    \u94dc\u635f\uff0c\u94c1\u635f\uff0c\u78c1\u6f0f

    \u4e3b\u78c1\u901a\u548c\u6f0f\u78c1\u901a\u7684\u533a\u522b

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u6b63\u65b9\u5411\u539f\u5219","title":"\u6b63\u65b9\u5411\u539f\u5219","text":"

    \u4e00\u822c\u91c7\u7528\u7535\u52a8\u673a\u60ef\u4f8b\u3002

    \u5173\u952e

    \u7535\u6d41\u65b9\u5411\u548c\u7535\u52bf\u65b9\u5411\u4e00\u81f4\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u53d8\u538b\u5668\u7a7a\u8f7d\u8fd0\u884c\u65f6\u7684\u65b9\u7a0b\u5f0f","title":"\u53d8\u538b\u5668\u7a7a\u8f7d\u8fd0\u884c\u65f6\u7684\u65b9\u7a0b\u5f0f","text":"

    \u7a33\u6001\u7535\u538b\u5e73\u8861\uff1a $$ \\dot{U_1}=-\\dot{E_1}-\\dot{E_{1\\sigma}}+\\dot{I_0}r_1 $$

    \u7a7a\u8f7d\u7535\u6d41 \\(\\dot{I_0}\\)

    \u8ba4\u4e3a\u4e3b\u78c1\u901a\u6309\u7167\u6b63\u5f26\u89c4\u5f8b\u53d8\u5316\uff1a $$ \\phi=\\phi_m\\sin(\\omega t) $$ \u5219\u7535\u52a8\u52bf\u4e3a\uff1a $$ E_1=-N_1\\frac{d\\phi}{dt}=-N_1\\omega\\phi_m\\cos(\\omega t)=E_{1m}\\sin(\\omega t - 90\u00b0) $$ 4.44\u516c\u5f0f\uff1a $$ E_1=4.44f_1N_1\\phi_m $$ \u4e3a\u4ec0\u4e48\u5de6\u8fb9\u662f\u6709\u6548\u503c\uff0c\u53f3\u8fb9\u662f\u5cf0\u503c\uff1f\u56e0\u4e3a4.44\u6bd4\u8f83\u597d\u8bb0\u3002

    \u4e3b\u7535\u52bf\u6ede\u540e\u4e8e\u4e3b\u78c1\u901a90\u00b0\u3002\u540c\u65f6\uff0c\u9700\u8981\u6ce8\u610f\u4e3b\u7535\u52a8\u52bf\u548c\u4e3b\u78c1\u901a\u662f\u5782\u76f4\u7684\uff0c\u800c\u7a7a\u8f7d\u7535\u6d41\u4f1a\u548c\u4e3b\u78c1\u901a\u6709\u4e00\u70b9\u89d2\u5ea6\u5dee\u3002

    \u539f\u8fb9\u7684\u6f0f\u7535\u6297\uff1a

    \\[ \\begin{align*} \\dot{E_{1\\sigma}} & = -j\\omega L_{1\\sigma}\\dot{I_0}\\\\ x_{1} & = \\omega L_{1\\sigma} \\end{align*} \\]"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u53d8\u538b\u5668\u7684\u7535\u538b\u5e73\u8861\u65b9\u7a0b\u5f0f\u7a7a\u8f7d","title":"\u53d8\u538b\u5668\u7684\u7535\u538b\u5e73\u8861\u65b9\u7a0b\u5f0f\uff08\u7a7a\u8f7d\uff09","text":"\\[ \\begin{align*} \\dot{U_{10}} & = -\\dot{E_1}+\\dot{I_0}Z_1\\\\ \\dot{U_{20}} & = \\dot{E_2} \\end{align*} \\]

    \u5176\u4e2d\uff0c\u6211\u4eec\u79f0\\(Z_1\\)\u4e3a\u539f\u8fb9\u7ed5\u7ec4\u6f0f\u963b\u6297\u3002\u4ece\u6570\u503c\u4e0a\u6765\u770b\uff0c\u6f0f\u963b\u6297\u7684\u538b\u964d\u5f88\u5c0f\uff0c\u6240\u4ee5\u7535\u538b\u4e3b\u8981\u548c\u7535\u52bf\u76f8\u5e73\u8861\u3002

    \u5173\u952e

    \u53d8\u538b\u5668\u7684\u4e3b\u78c1\u901a\u4e3b\u8981\u53d6\u51b3\u4e8e\u7535\u7f51\u7535\u538b\uff0c\u9891\u7387\u548c\u531d\u6570\uff0c\u4e0e\u8d1f\u8f7d\u5927\u5c0f\u57fa\u672c\u65e0\u5173\uff0c\u4f1a\u7a0d\u6709\u53d8\u5316\u3002\u8fd9\u4e2a\u5c31\u662f\u6052\u78c1\u901a\u7684\u6982\u5ff5\u3002

    \u4e3a\u4e86\u8ba1\u7b97\u65b9\u4fbf\uff0c\u6211\u4eec\u5728\u8fd9\u91cc\u8ba4\u4e3a\\(-\\dot{E_1}\\)\u4e5f\u662f\u4e00\u4e2a\u7531\\(I_0\\)\u5f15\u8d77\u7684\u538b\u964d\uff0c\u4e0e\u4e4b\u5bf9\u5e94\u7684\uff0c\u5c31\u53ef\u4ee5\u5f15\u51fa\u52b1\u78c1\u963b\u6297\uff0c\u52b1\u78c1\u7535\u6d41\uff0c\u52b1\u78c1\u7535\u611f\u8fd9\u51e0\u4e2a\u7269\u7406\u91cf\u3002

    \\[ -\\dot{E_1}=\\dot{I_0}Z_{m}=\\dot{I_0}\\left(r_{m}+jx_{m}\\right) \\]

    \u4e0a\u9762\u7684\u7269\u7406\u91cf\u662f\u6709\u81ea\u5df1\u7684\u7269\u7406\u610f\u4e49\u7684\uff1a

    \u7a7a\u8f7d\u7684\u65f6\u5019\u7535\u538b\u548c\u7535\u6d41\u5438\u6536\u80fd\u91cf\uff0c\u4ee5\u8865\u507f\u94c1\u635f\u548c\u94dc\u635f\u3002\u7ecf\u8fc7\u63a8\u5bfc\uff0c\u53ef\u4ee5\u5f97\u5230\uff1a

    \\[ \\begin{align*} \\dot{U_1} &= -\\dot{E_1} + \\dot{I_0}Z_1\\\\ \\dot{U_1}\\dot{I_0} &= -\\dot{E_1}\\dot{I_0} + \\dot{I_0}^2Z_1\\\\ p_{Fe} &= -\\dot{E_1}\\cdot\\dot{I_0}\\\\ &=-\\dot{E_1}\\cdot \\left(\\dot{I_\\mu}+\\dot{I_{Fe}}\\right)\\\\ &=E_1I_{Fe} \\end{align*} \\]"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u53d8\u538b\u5668\u7684\u8d1f\u8f7d\u8fd0\u884c","title":"\u53d8\u538b\u5668\u7684\u8d1f\u8f7d\u8fd0\u884c","text":"

    \u5728\u4e0a\u4e00\u8282\u4e2d\uff0c\u6211\u4eec\u63d0\u5230\u4e86\u6052\u78c1\u901a\u7684\u6982\u5ff5\uff0c\u4e5f\u5c31\u662f\u53d8\u538b\u5668\u539f\u8fb9\u7684\\(E_1\\approx U_1=const\\)\u800c\u4e14\\(\\phi_m \\approx const\\)\u3002\u65e2\u7136\u4e3b\u78c1\u901a\u662f\u6052\u5b9a\u7684\uff0c\u6839\u636e\u57fa\u5c14\u970d\u592b\u7b2c\u4e8c\u5b9a\u5f8b\uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u5230\u603b\u78c1\u52bf\u662f\u6052\u5b9a\u7684\u3002

    \u5173\u952e

    \u78c1\u52a8\u52bf\u6052\u5b9a\u662f\u7531\u6052\u78c1\u901a\u4ee5\u53ca\u5ffd\u7565\u6f0f\u78c1\u5f97\u6765\u7684\uff0c\u8fd9\u4e2a\u5173\u7cfb\u5f0f\u8ba9\u6211\u4eec\u5efa\u7acb\u4e86\u8d1f\u8f7d\u7535\u6d41\u4e0e\u7a7a\u8f7d\u7535\u6d41\u4e4b\u95f4\u7684\u8054\u7cfb\u3002

    \u6240\u4ee5\u6839\u636e\u8fd9\u4e2a\u5f0f\u5b50\uff0c\u5c31\u53ef\u4ee5\u5217\u51fa\u4e00\u4e2a\u5f88\u91cd\u8981\u7684\u5173\u7cfb\u5f0f\uff1a

    \\[ \\begin{align*} \\dot{I_1}N_1 + \\dot{I_2}N_2 &= \\dot{I_0}N_1 \\\\ \\dot{I_1} + \\frac{1}{k} \\dot{I_2} &= \\dot{I_0} \\end{align*} \\]

    \u4ee4\u8fd9\u4e2a\u5173\u7cfb\u5f0f\u4e2d\uff0c\\(\\dot{I_1}=\\dot{I_0}+\\dot{I_L}\\)\uff0c\u7b80\u5355\u63a8\u4e00\u4e0b\u5c31\u53ef\u4ee5\u5f97\u5230

    \\[ \\begin{cases} \\dot{I_L}N_1 + \\dot{I_2}N_2 = 0\\\\ \\dot{I_2} = -k\\dot{I_L} \\end{cases} \\]

    \u7ed3\u8bba\uff1a

    \u63a5\u4e0b\u6765\u5206\u6790\u526f\u8fb9\u7684\u7535\u538b\u548c\u529f\u7387\uff0c\u56e0\u4e3a\u6bd4\u8f83\u7b80\u5355\uff0c\u6240\u4ee5\u76f4\u63a5\u7ed9\u51fa\u7ed3\u8bba\uff1a

    \u526f\u8fb9\u7684\u7535\u538b\uff1a\\(U_2\\approx E_2\\)

    \u526f\u8fb9\u7684\u529f\u7387\uff1a

    \\[ \\begin{align*} p_2 &= \\dot{U}_2\\dot{I}_2 \\approx \\dot{E}_2 \\left(-k\\dot{I}_{1L} \\right)\\\\ &= \\left(-\\dot{E}_1 \\right)\\left(-\\dot{I}_{1L} \\right) \\approx \\dot{U}_1 \\dot{I}_{1L}\\\\ &= \\dot{U}_{1}\\dot{I}_{1} - \\dot{U}_{1}\\dot{I}_{0} \\end{align*} \\]

    \u7ed3\u8bba\uff1a

    \u4ee5\u540e\uff0c\u6211\u4eec\u7528 \\(I_m\\) \u6765\u4ee3\u66ff \\(I_0\\) \u8868\u793a\u7a7a\u8f7d\u7535\u6d41\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u6298\u7b97\u7b49\u6548\u7535\u8def\u6807\u5e7a\u503c","title":"\u6298\u7b97\uff0c\u7b49\u6548\u7535\u8def\uff0c\u6807\u5e7a\u503c","text":"

    \u540e\u9762\u7684\u77e5\u8bc6\u70b9\uff0c\u6bd4\u5982\u6298\u7b97\uff0c\u7b49\u6548\u7535\u8def\uff0c\u6807\u5e7a\u503c\u90fd\u6bd4\u8f83\u7b80\u5355\uff08\u5982\u679c\u5145\u5206\u7406\u89e3\u4e86\u524d\u9762\u7684\u63a8\u5bfc\u7684\u8bdd\uff09\uff0c\u6240\u4ee5\u8fd9\u91cc\u5c31\u4e0d\u518d\u591a\u5199\u3002

    \u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u6700\u7b80\u7b49\u6548\u7535\u8def\u5e38\u5e38\u7528\u4e8e\u5b9a\u6027\u5206\u6790\uff0c\u5728\u5b9a\u91cf\u8ba1\u7b97\u7684\u65f6\u5019\u4e0d\u8981\u7528\u3002

    \u4e3a\u4e86\u66f4\u597d\u7684\u7406\u89e3\uff0c\u5efa\u8bae\u81ea\u5df1\u6839\u636e\u65b9\u7a0b\u753b\u4e00\u4e0bT\u578b\u7b49\u6548\u7535\u8def\u7684\u76f8\u91cf\u56fe\u3002

    \u8fd9\u91cc\u518d\u52a0\u4e00\u4e2a\u516c\u5f0f

    \\[ \\alpha = \\tan^{-1}\\frac{r_m}{x_m} \\]

    \u8fd9\u4e5f\u662f\\(\\alpha\\)\u88ab\u79f0\u4f5c\u94c1\u635f\u89d2\u7684\u539f\u56e0\uff0c\u5176\u5927\u5c0f\u4e3b\u8981\u53d6\u51b3\u4e8e\u94c1\u635f\u7535\u963b\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u53d8\u538b\u5668\u7684\u53c2\u6570\u6d4b\u5b9a","title":"\u53d8\u538b\u5668\u7684\u53c2\u6570\u6d4b\u5b9a","text":"

    \u6ce8\u610f

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u672c\u7ae0\u4f5c\u4e1a","title":"\u672c\u7ae0\u4f5c\u4e1a","text":"This browser does not support PDFs"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/","title":"\u5f02\u6b65\u4ea4\u6d41\u7535\u673a","text":"

    Note

    \u73b0\u5728\u57fa\u672c\u662f\u77e5\u8bc6\u70b9\u7684\u68b3\u7406\uff0c\u7b14\u8005\u7cbe\u529b\u548c\u65f6\u95f4\u6709\u9650\uff0c\u5f88\u591a\u516c\u5f0f\u7684\u63a8\u5bfc\u548c\u6574\u7406\u8fd8\u8bf7\u53c2\u89c1\u8bfe\u672c\u548c\u8001\u5e08\u7684ppt\uff0c\u6211\u8fd9\u91cc\u5c31\u662f\u987a\u4e86\u4e00\u904d\u601d\u8def\u3002

    \u5982\u679c\u80fd\u5e2e\u5230\u4f60\uff0c\u90a3\u5c31\u518d\u597d\u4e0d\u8fc7\u4e86\u3002\u53d1\u73b0\u95ee\u9898\u6b22\u8fce\u7ed9\u6211\u53d1\u90ae\u4ef6\u53cd\u6620\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u5f02\u6b65\u7535\u673a\u7684\u5206\u7c7b\u7ed3\u6784","title":"\u5f02\u6b65\u7535\u673a\u7684\u5206\u7c7b\u3001\u7ed3\u6784","text":"

    \u9f20\u7b3c\u578b\u8f6c\u5b50\u5236\u9020\u5de5\u827a\u6bd4\u8d77\u7ed5\u7ebf\u5f0f\u66f4\u52a0\u7b80\u5355\uff0c\u56e0\u6b64\u5e94\u7528\u66f4\u52a0\u5e7f\u6cdb\u3002

    \u7ed5\u7ebf\u5f0f\u8f6c\u5b50\u7684\u7279\u70b9\u662f\u53ef\u4ee5\u901a\u8fc7\u6ed1\u73af\u548c\u7535\u5237\u5728\u8f6c\u5b50\u7ed5\u7ec4\u4e2d\u52a0\u5165\u9644\u52a0\u7535\u963b\uff0c\u7528\u4e8e\u6539\u5584\u7535\u52a8\u673a\u7684\u8d77\u52a8\u65b0\u80fd\uff0c\u6216\u8c03\u8282\u7535\u52a8\u673a\u7684\u8f6c\u901f\u3002

    \u9f20\u7b3c\u578b\u7684\u7279\u70b9\u662f\u8f6c\u5b50\u7684\u6781\u5bf9\u6570\u4e0e\u5b9a\u5b50\u6781\u5bf9\u6570\u5339\u914d\uff0c\u9002\u5408\u53d8\u6781\u8c03\u901f\u573a\u5408\u3002

    \u8fd9\u91cc\u7684\u4e1c\u897f\u4e4b\u540e\u4f1a\u8be6\u7ec6\u8bf4\u3002

    \u5f02\u6b65\u7535\u52a8\u673a\u7684\u6c14\u9699\u8981\u6c42\u5c3d\u91cf\u5c0f\uff0c\u56e0\u4e3a\u5f02\u6b65\u7535\u673a\u7684\u8f6c\u5b50\u4e0a\u6ca1\u529e\u6cd5\u52a0\u52b1\u78c1\uff0c\u6240\u4ee5\u78c1\u573a\u5168\u90e8\u6765\u81ea\u4e8e\u5b9a\u5b50\u3002\u56e0\u4e3a\u8fd9\u4e2a\uff0c\u5982\u679c\u6c14\u9699\u5f88\u5927\uff0c\u90a3\u4e48\u5c31\u4f1a\u5bfc\u81f4\u4e3b\u78c1\u8def\u7684\u78c1\u963b\u589e\u5927\uff0c\u6240\u9700\u7684\u52b1\u78c1\u7535\u6d41\u5c31\u4f1a\u589e\u5927\uff0c\u529f\u7387\u56e0\u6570\u5c31\u4f1a\u964d\u4f4e\u3002\u6c14\u9699\u7684\u5927\u5c0f\u53d6\u51b3\u4e8e\u5de5\u827a\u6c34\u51c6\u3002

    \u4e0e\u53d8\u538b\u5668\u5bf9\u6bd4\uff1a

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u5f02\u6b65\u7535\u673a\u7684\u8fd0\u884c","title":"\u5f02\u6b65\u7535\u673a\u7684\u8fd0\u884c","text":"

    \u672c\u8282\u4e3b\u8981\u5305\u62ec

    \u65cb\u8f6c\u78c1\u573a\uff0c\u5de5\u4f5c\u539f\u7406\uff0c\u8f6c\u5dee\u7387\uff0c\u989d\u5b9a\u503c\uff0c\u8fd0\u884c\u53c2\u6570\u5206\u6790\u548c\u8ba1\u7b97

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u65cb\u8f6c\u78c1\u573a","title":"\u65cb\u8f6c\u78c1\u573a","text":"

    \u901a\u8fc7\u4e09\u76f8\u5bf9\u79f0\u4ea4\u6d41\u7535\u4f1a\u5728\u6c14\u9699\u4e2d\u4ea7\u751f\u65cb\u8f6c\u78c1\u573a\u3002

    \u65cb\u8f6c\u7684\u8f6c\u5411\uff08direction\uff09\u662f\u7531\u76f8\u5e8f\u51b3\u5b9a\u7684\uff0c\u6211\u4eec\u603b\u662f\u7531\u8d85\u524d\u7684\u76f8\u4f20\u5411\u6ede\u540e\u7684\u76f8\u3002

    \u91cd\u8981\u7684\u4e00\u70b9

    \u4ea4\u6362\u4efb\u610f\u4e24\u6781\u7684\u987a\u5e8f\uff0c\u5c31\u53ef\u4ee5\u6539\u53d8\u65cb\u8f6c\u78c1\u573a\u7684\u65b9\u5411\uff08\u65cb\u8f6c\u7684\u65b9\u5411\uff09\u3002\u4e5f\u5c31\u662f\u4efb\u610f\u4ea4\u6362\u5b9a\u5b50\u4fa7\u7684\u4e24\u6839\u7535\u6e90\u7ebf\u3002

    \u65cb\u8f6c\u7684\u901f\u5ea6\uff1a

    \\[ n_s = n_1 = \\frac{60f_1}{p}(r/min) \\]

    \u65cb\u8f6c\u78c1\u573a\u7684\u8f6c\u901f\u53d6\u51b3\u4e8e\u5b9a\u5b50\u7535\u6d41\u7684\u9891\u7387\\(f_1\\)\u548c\u7535\u52a8\u673a\u7684\u78c1\u6781\u5bf9\u6570\\(p\\)\u3002

    \u7b14\u8005\u6ce8

    \u8fd9\u4e2a\u5730\u65b9\uff0c\u53ea\u9700\u8981\u5b9a\u6027\u7684\u53bb\u60f3\u65cb\u8f6c\u78c1\u573a\u7684\u884c\u4e3a\u5c31\u53ef\u4ee5\u4e86\uff0c\u4e0d\u8981\u53bb\u60f3\u8fd9\u4e2a\u65cb\u8f6c\u7684\u78c1\u573a\u662f\u4e0d\u662f\u5747\u5300\u7684\uff0c\u5b83\u7684\u5927\u5c0f\u4f1a\u600e\u4e48\u53d8\uff0c\u56e0\u4e3a\u5b9a\u91cf\u7684\u8ba1\u7b97\u9700\u8981\u4f7f\u7528\u6709\u9650\u5143\u5206\u6790\u8fdb\u884c\u6570\u503c\u6a21\u62df\uff0c\u8ddf\u6211\u4eec\u8fd9\u4e2a\u8bfe\u5173\u7cfb\u4e0d\u5927\u3002

    \u603b\u4e4b\u4e00\u53e5\u8bdd\uff0c\u4e0d\u8981\u7ea0\u7ed3\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u5f02\u6b65\u7535\u673a\u7684\u5de5\u4f5c\u539f\u7406","title":"\u5f02\u6b65\u7535\u673a\u7684\u5de5\u4f5c\u539f\u7406","text":"

    \u5de6\u529b\u53f3\u7535\u7684\u5b9a\u5f8b\u3002

    \\[ \\begin{align*} E &= Blv\\\\ F &= Bil \\end{align*} \\]

    \u9f20\u7b3c\u7684\u6761\u76f8\u5bf9\u4e8e\u65cb\u8f6c\u78c1\u573a\u5f80\u76f8\u53cd\u7684\u65b9\u5411\u8fd0\u52a8\uff0c\u7136\u540e\u5c31\u4f1a\u4ea7\u751f\u7535\u52a8\u52bf\uff0c\u7535\u52a8\u52bf\u4f1a\u5e26\u6765\u7535\u6d41\uff0c\u800c\u8fd9\u4e2a\u7535\u6d41\u4f1a\u8ba9\u5bfc\u6761\u53d7\u529b\u3002\u4e00\u901a\u5206\u6790\u4e4b\u540e\uff0c\u8fd9\u4e2a\u53d7\u529b\u7684\u65b9\u5411\u4f1a\u548c\u78c1\u573a\u65cb\u8f6c\u7684\u65b9\u5411\u76f8\u540c\u3002\uff08\u7528\u695e\u6b21\u5b9a\u5f8b\u4e5f\u53ef\u4ee5\u89e3\u91ca\uff0c\u800c\u4e14\u66f4\u52a0\u76f4\u89c2\uff09

    \u4ece\u8fd9\u91cc\u7684\u53d7\u529b\u5c31\u53ef\u4ee5\u5206\u6790\u51fa\u201c\u5f02\u6b65\u201d\u5728\u4f55\u5904\u3002\u8bfb\u8005\u53ef\u4ee5\u60f3\u8c61\u4e00\u4e0b\uff0c\u76f8\u5f53\u4e8e\u8fd9\u4e2a\u65cb\u8f6c\u7684\u78c1\u573a\u518d\u7275\u7740\u4e00\u6839\u7ef3\u5b50\u62c9\u7740\u8f6c\u5b50\u8f6c\u52a8\uff0c\u800c\u8fd9\u4e2a\u78c1\u573a\u548c\u53d7\u529b\u662f\u4e0d\u5747\u5300\u7684\uff0c\u4e5f\u5c31\u662f\u7ef3\u5b50\u662f\u8f6f\u7684\uff0c\u6240\u4ee5\uff0c\u8f6c\u5b50\u4e00\u5b9a\u4f1a\u548c\u78c1\u573a\u5b58\u5728\u4e00\u5b9a\u7684\u5ef6\u65f6\uff0c\u8fd9\u5c31\u662f\u201c\u5f02\u6b65\u201d\u7684\u542b\u4e49\u3002

    \u6ce8\u610f

    \u56e0\u4e3a\u5f02\u6b65\u7535\u673a\u8f6c\u5b50\u4e0a\u7684\u7535\u6765\u81ea\u611f\u5e94\u800c\u975e\u5916\u52a0\uff0c\u6240\u4ee5\u6211\u4eec\u4e5f\u628a\u5f02\u6b65\u7535\u673a\u79f0\u4e3a\u201c\u611f\u5e94\u7535\u673a\u201d\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u8f6c\u5dee\u7387","title":"\u8f6c\u5dee\u7387","text":"

    \u5f97\u76ca\u4e8e\u4e0a\u9762\u5bf9\u201c\u5f02\u6b65\u201d\u7684\u5206\u6790\uff0c\u6211\u4eec\u5f88\u5bb9\u6613\u60f3\u5230\uff0c\u9700\u8981\u4e00\u4e2a\u7269\u7406\u91cf\u6765\u8861\u91cf\u78c1\u573a\u8f6c\u901f\u548c\u8f6c\u5b50\u8f6c\u901f\u7684\u5dee\u503c\uff0c\u606d\u559c\u4f60\u60f3\u5230\u4e86\u8f6c\u5dee\u7387\u7684\u5b9a\u4e49\u3002

    \\[ s = \\frac{n_s - n}{n_s} = \\frac{\\Delta n}{n_s} \\] \u72b6\u6001 \u8f6c\u5dee\u7387 \u8f6c\u901f\u5173\u7cfb \u7535\u52a8\u673a \\(0<s<1\\) \u7535\u78c1\u8f6c\u77e9\u7684\u65b9\u5411\u548c\u65cb\u8f6c\u78c1\u573a\uff0c\u4ee5\u53ca\u8f6c\u5b50\u7684\u65cb\u8f6c\u65b9\u5411\u90fd\u76f8\u540c\uff0c\u7535\u78c1\u8f6c\u77e9\u4e3a\u9a71\u52a8\u6027\u8d28\uff08\u62d6\u52a8\u4f5c\u7528\uff09\u7684\u8f6c\u77e9\u3002\u8f6c\u5b50\u8f6c\u901f\u5c0f\u4e8e\u65cb\u8f6c\u78c1\u573a\u3002 \u53d1\u7535\u673a \\(s<0\\) \u7535\u78c1\u8f6c\u77e9\u65b9\u5411\u548c\u65cb\u8f6c\u78c1\u573a\u4ee5\u53ca\u8f6c\u5b50\u8f6c\u5411\u90fd\u76f8\u53cd\uff0c\u7535\u78c1\u8f6c\u77e9\u4e3a\u5236\u52a8\u7684\u6027\u8d28\u3002\u8f6c\u5b50\u8f6c\u901f\u5927\u4e8e\u65cb\u8f6c\u78c1\u573a\uff1b \u7535\u78c1\u5236\u52a8 \\(s>1\\) \u7535\u78c1\u8f6c\u77e9\u65b9\u5411\u4e8e\u65cb\u8f6c\u78c1\u573a\u7684\u65b9\u5411\u76f8\u540c\uff0c\u4f46\u662f\u548c\u8f6c\u5b50\u65b9\u5411\u76f8\u53cd\uff0c\u4e3a\u5236\u52a8\u7684\u8f6c\u77e9\u3002"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u5f02\u6b65\u7535\u673a\u7684\u989d\u5b9a\u503c","title":"\u5f02\u6b65\u7535\u673a\u7684\u989d\u5b9a\u503c","text":"
    1. \u989d\u5b9a\u529f\u7387\uff1a\u8f93\u51fa\u7684\u673a\u68b0\u529f\u7387\u3002
    2. \u989d\u5b9a\u7535\u538b\uff1a\u989d\u5b9a\u72b6\u6001\u4e0b\u52a0\u8f7d\u5b9a\u5b50\u7ed5\u7ec4\u4e0a\u7684\u7ebf\u7535\u538b\u3002
    3. \u989d\u5b9a\u7535\u6d41\uff1a\u7535\u52a8\u673a\u5728\u5b9a\u5b50\u7ed5\u7ec4\u4e0a\u52a0\u989d\u5b9a\u7535\u538b\uff0c\u8f74\u4e0a\u8f93\u51fa\u989d\u5b9a\u529f\u7387\u7684\u65f6\u5019\uff0c\u5b9a\u5b50\u7ed5\u7ec4\u4e2d\u7684\u7ebf\u7535\u6d41\u3002
    4. \u989d\u5b9a\u9891\u7387\uff1a50Hz(China)
    5. \u989d\u5b9a\u8f6c\u901f\uff1a123\u6761\u4ef6\u4e0b\u7684\u8f6c\u8f74\u7684\u8f6c\u901f\u3002
    6. \u989d\u5b9a\u529f\u7387\u5f15\u8ff0\uff1a\u7535\u52a8\u673a\u52a0\u989d\u5b9a\u8d1f\u8f7d\u7684\u65f6\u5019\uff0c\u5b9a\u5b50\u4fa7\u7684\u529f\u7387\u56e0\u6570\u3002
    7. \u989d\u5b9a\u6548\u7387\uff1a\\(P_N / \\sqrt{3}U_NI_N\\)

    \u6ce8\u610f

    \u4e0a\u9762\u7684\u5404\u79cd\u4e1c\u897f\u9664\u4e86\u989d\u5b9a\u8f6c\u901f\u63cf\u8ff0\u7684\u662f\u8f6c\u5b50\u4e4b\u5916\uff0c\u5176\u4f59\u7684\u91cf\u6307\u7684\u90fd\u662f\u5b9a\u5b50\u3002

    \u5f02\u6b65\u7535\u673a\u7684\u529f\u7387\u56e0\u6570\u603b\u662f\u6ede\u540e\u7684\u3002\uff08\u53ea\u80fd\u4ece\u7535\u7f51\u5438\u6536\u65e0\u529f\uff0c\u611f\u6027\u8d1f\u8f7d\uff09

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u5f02\u6b65\u7535\u52a8\u673a\u8fd0\u884c\u53c2\u6570\u5206\u6790\u548c\u8ba1\u7b97","title":"\u5f02\u6b65\u7535\u52a8\u673a\u8fd0\u884c\u53c2\u6570\u5206\u6790\u548c\u8ba1\u7b97","text":"

    \u4e09\u76f8\u5f02\u6b65\u7535\u52a8\u673a\u7684\u7535\u78c1\u5173\u7cfb\u548c\u53d8\u538b\u5668\u7c7b\u4f3c\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u5047\u8bbe\u8f6c\u5b50\u4e0d\u8f6c","title":"\u5047\u8bbe\u8f6c\u5b50\u4e0d\u8f6c","text":"

    \u9891\u7387\u4e00\u6837\uff0c\u6240\u4ee5\u5c31\u5b8c\u5168\u548c\u53d8\u538b\u5668\u4e00\u6837\u3002

    \\[ \\begin{align*} U_1 \\approx E_1 &= 4.44 f_1 N_1 \\Phi_m k_{\\omega1}\\\\ U_2 \\approx E_2 &= 4.44 f_1 N_2 \\Phi_m k_{\\omega2} \\end{align*} \\]

    \u53c2\u6570\u5b9a\u4e49

    \\(k_{\\omega1}\\) \u548c \\(k_{\\omega2}\\) \u6307\u7684\u662f\u4e00\u6b21\u4fa7\u548c\u4e8c\u6b21\u4fa7\u7684\u7ed5\u7ec4\u7cfb\u6570\uff08\u6765\u81ea\u540c\u6b65\u7535\u673a\uff0c\u8bb0\u4f4f\u5c31\u884c\u4e86\uff09

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u8f6c\u5b50\u8f6c\u8d77\u6765\u4e86","title":"\u8f6c\u5b50\u8f6c\u8d77\u6765\u4e86","text":"

    \u8fd9\u65f6\u5019\u8f6c\u5b50\u611f\u5e94\u7535\u52bf\u7684\u9891\u7387\\(f_2\\)\u4e3a

    \\[ f_2 = \\frac{\\Delta n}{60} p = \\frac{n_s - n}{60} p = s \\frac{n_s p}{60} = s f_1 \\]

    \u8f6c\u5b50\u7535\u6d41\u7684\u9891\u7387\u662f\u53d8\u5316\u7684\uff0c\u4e8e\u8f6c\u5dee\u7387\u6709\u5173\u3002\u6b63\u5e38\u8fd0\u884c\u7684\u65f6\u5019\uff0c\u8f6c\u5b50\u7535\u6d41\u7684\u9891\u7387\u5f88\u4f4e\uff0c1-3Hz\u3002\u8d1f\u8f7d\u8d8a\u91cd\uff0c\u8f6c\u901f\u8d8a\u4f4e\uff0c\u8f6c\u5dee\u7387\u8d8a\u5927\uff0c\u8f6c\u5b50\u7684\u7535\u6d41\u9891\u7387\u5c31\u4f1a\u8d8a\u5927\u3002

    \u6240\u4ee5\uff0c\u8f6c\u5b50\u65cb\u8f6c\u65f6\u7684\u611f\u5e94\u7535\u52a8\u52bf\u4e3a\uff1a

    \\[ E_{2s} = 4.44 f_2 N_2 \\Phi_m k_{\\omega2} = sE_{2} \\]

    \u6ce8\u610f

    \\(E_{2s}\\) \u8868\u793a\u8f6c\u5b50\u8f6c\u52a8\u7684\u60c5\u666f\uff0c\u800c\\(E_{2}\\)\u5c31\u8868\u793a\u8f6c\u5b50\u4e0d\u8f6c\u7684\u60c5\u666f\u3002

    \u56e0\u4e3as\u4e00\u822c\u57280.01\u548c0.06\u4e4b\u95f4\uff0c\u6240\u4ee5\u7535\u673a\u4e2d\u5bf9\u8f6c\u5b50\u7684\u7edd\u7f18\u6c34\u5e73\u8981\u6c42\u5e76\u4e0d\u9ad8\u3002\u8f6c\u8d77\u6765\u7684\u65f6\u5019\u7535\u52a8\u52bf\u660e\u663e\u53d8\u5c0f\u3002

    \u4ece\u4e0a\u9762\u7684\u5206\u6790\u5c31\u80fd\u63a8\u5bfc\u51fa\u7b49\u6548\u7535\u8def\u3002

    \u6bd4\u8f83\u76f4\u89c2\u7684\u662f\uff0c\u8f6c\u5dee\u7387\\(s\\)\u8d8a\u5927\uff0c\u5219\\(I_2\\)\u8d8a\u5927\uff0c\u800c\u529f\u7387\u56e0\u6570\u5219\u53d8\u5c0f\u3002

    \u91cd\u8981\u7ed3\u8bba

    \u5b9a\u5b50\u78c1\u573a\u548c\u8f6c\u5b50\u78c1\u573a\u76f8\u5bf9\u9759\u6b62\u3002

    \u8fd9\u4e2a\u7ed3\u8bba\u4e00\u5f00\u59cb\u8fd8\u662f\u4e0d\u592a\u597d\u7406\u89e3\uff0c\u8fd9\u91cc\u5c31\u662f\u5728\u8f6c\u5b50\u78c1\u573a\u5728\u5b9e\u9645\u8f6c\u52a8\u7684\u57fa\u7840\u4e0a\uff0c\u56e0\u4e3a\u81ea\u8eab\u611f\u5e94\u51fa\u7684\u7535\u6d41\u4e5f\u4f1a\u4ea7\u751f\u78c1\u573a\uff0c\u6240\u4ee5\u5c31\u4f1a\u589e\u52a0 \\(\\Delta n\\)\uff0c\u6240\u4ee5\u548c\u5c31\u662f \\(n_s\\).

    \u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u8f6c\u5b50\u78c1\u573a\u7684\u8f6c\u901f\u548c\u8f6c\u5b50\u672c\u8eab\u7684\u8f6c\u901f\u4e0d\u4e00\u6837\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u4e09\u76f8\u5f02\u6b65\u7535\u673a\u7684\u7b49\u503c\u7535\u8def\u529f\u7387\u56fe\u8f6c\u77e9","title":"\u4e09\u76f8\u5f02\u6b65\u7535\u673a\u7684\u7b49\u503c\u7535\u8def\u3001\u529f\u7387\u56fe\u3001\u8f6c\u77e9","text":""},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u7b49\u503c\u7535\u8def","title":"\u7b49\u503c\u7535\u8def","text":"

    \u5f02\u6b65\u7535\u673a\u7684\u7b49\u503c\u7535\u8def\uff0c\u548c\u53d8\u538b\u5668\u6bd4\u8f83\u7c7b\u4f3c\uff0c\u4f46\u662f\u591a\u4e86\u4e00\u4e2a\u9891\u7387\u7684\u5f52\u7b97\u3002\u76f8\u5f53\u4e8e\u5728\u8f6c\u5b50\u4fa7\u4e32\u8054\u4e00\u4e2a\u5927\u5c0f\u4e3a \\(\\frac{1-s}{s} R_2\\) \u7684\u7eaf\u7535\u963b\uff0c\u8fd9\u6837\u5b50\u5c31\u53ef\u4ee5\u53d8\u6362\u6210\u8f6c\u5b50\u4e0d\u8f6c\u7684\u60c5\u5f62\u3002

    \u4e5f\u5c31\u662f\u4e8c\u6b21\u4fa7\u9891\u7387\u548c\u4e00\u6b21\u4fa7\u4e00\u6837\u3002

    \u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u8fd9\u4e2a\u4e32\u8054\u4e0a\u53bb\u7684\u7b49\u6548\u7535\u963b\u6d88\u8017\u7684\u529f\u7387\u662f\u603b\u673a\u68b0\u529f\u7387 \\(P_\\Omega\\)\u3002

    \u6ce8\u610f

    \u7b49\u6548\u7535\u8def\u4e2d\\(R_m\\)\u4f53\u73b0\u7684\u662f\u5b9a\u5b50\u4fa7\u7684\u94c1\u8017\uff0c\u56e0\u4e3a\u8f6c\u5b50\u4fa7\u7684\u9891\u7387\u5f88\u5c0f\uff0c\u53ef\u5ffd\u7565\u3002\u5206\u6790\u5f02\u6b65\u7535\u52a8\u673a\u7684\u94c1\u635f\u53ea\u6709\u5b9a\u5b50\u4fa7\u7684\u94c1\u635f\u3002

    \u8f93\u51fa\u673a\u68b0\u529f\u7387\u548c\u771f\u5b9e\u7684\u8f93\u51fa\u529f\u7387\u6709\u5dee\u5f02\uff0c\u9700\u8981\u51cf\u53bb\u673a\u68b0\u635f\u8017\uff08\u4e0d\u53d8\uff09\u548c\u9644\u52a0\u635f\u8017\uff08\u53ef\u53d8\uff09\u3002\u8fd9\u91cc\u548c\u76f4\u6d41\u7535\u673a\u662f\u7c7b\u4f3c\u7684\u3002

    \u4e24\u4e2a\u91cd\u8981\u7684\u529f\u7387\u5173\u7cfb\u5f0f\uff1a

    \\[ \\begin{align*} p_{Cu2} &= sP_{em}\\\\ P_{\\Omega} &= (1-s)P_{em} \\end{align*} \\]

    \u6240\u4ee5\u7535\u78c1\u529f\u7387\u4e00\u5b9a\u7684\u65f6\u5019\uff0c\u7535\u673a\u8f6c\u901f\u8d8a\u4f4e\uff0c\u94dc\u8017\u8d8a\u5927\uff0c\u673a\u68b0\u529f\u7387\u8d8a\u5c0f\u3002\u6211\u4eec\u4e00\u822c\u8981\u6c42\u5f02\u6b65\u7535\u52a8\u673a\u4e0d\u80fd\u957f\u671f\u5728\u4f4e\u901f\u4e0b\u957f\u65f6\u95f4\u8fd0\u884c\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u5f02\u6b65\u7535\u673a\u7684\u8f6c\u77e9","title":"\u5f02\u6b65\u7535\u673a\u7684\u8f6c\u77e9","text":"

    \u548c\u76f4\u6d41\u7535\u673a\u7c7b\u4f3c\uff0c\u4e0d\u518d\u8d58\u8ff0\u3002

    \\[ \\begin{align*} T &= \\frac{P}{\\Omega}\\\\ T &= 9.55 \\frac{P}{n} \\end{align*} \\]"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u5f02\u6b65\u7535\u673a\u7684\u673a\u68b0\u7279\u6027","title":"\u5f02\u6b65\u7535\u673a\u7684\u673a\u68b0\u7279\u6027","text":""},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u81ea\u7136\u673a\u68b0\u7279\u6027","title":"\u81ea\u7136\u673a\u68b0\u7279\u6027","text":"

    \u5b9a\u4e49\uff1a\u4e09\u76f8\u5f02\u6b65\u7535\u673a\u7684\u673a\u68b0\u7279\u6027\u662f\u6307\u4e8e\u7535\u538b\u3001\u9891\u7387\u548c\u53c2\u6570\u56fa\u5b9a\u7684\u6761\u4ef6\u4e0b\uff0c\u7535\u78c1\u8f6c\u77e9\u548c\u8f6c\u901f\u4e4b\u95f4\u7684\u51fd\u6570\u5173\u7cfb\u3002

    \u7269\u7406\u8868\u8fbe\u5f0f\uff1a

    \\[ T_e = C_T \\Phi_m I_2'\\cos \\phi_2 \\]

    \\(C_T\\)\u662f\u4e09\u76f8\u5f02\u6b65\u7535\u673a\u7684\u8f6c\u77e9\u5e38\u6570\uff0c\\(\\Phi_m\\)\u662f\u6c14\u9699\u4e3b\u78c1\u901a\uff0c\\(\\phi_2\\)\u662f\u8f6c\u5b50\u4fa7\u529f\u7387\u56e0\u6570\u89d2\u3002\u6211\u4eec\u4e00\u822c\u4f7f\u7528\u8fd9\u4e2a\u516c\u5f0f\u7528\u4f5c\u5b9a\u6027\u5206\u6790\u3002

    \u53c2\u6570\u8868\u8fbe\u5f0f\uff1a

    \\[ T_em = \\frac{P_{em}}{\\Omega_1}=\\frac{3I_2'R_2/s}{\\frac{2\\pi f_1}{p}}=\\frac{3p}{2\\pi f_1} \\cdot \\frac{U_1^2 R_2 / s}{\\left[R_1 + R_2/s\\right]^2 + \\left[x_{1\\sigma} + x_{2\\sigma}' \\right]^2} \\]

    \u8fd9\u4e2a\u516c\u5f0f\u5bf9\u539f\u6765\u7684\u7b49\u6548\u7535\u8def\u8fdb\u884c\u4e86\\(\\Gamma\\)\u7b49\u6548\u3002

    \u4e09\u76f8\u5f02\u6b65\u7535\u52a8\u673a\u5728\u7535\u538b\u3001\u9891\u7387\u5747\u4e3a\u989d\u5b9a\u503c\u4e0d\u53d8\uff0c\u5b9a\u3001\u8f6c\u5b50\u56de\u8def\u4e0d\u4e32\u5165\u4efb\u4f55\u7535\u8def\u5143\u4ef6\u7684\u6761\u4ef6\u4e0b\u7684\u673a\u68b0\u7279\u6027\u6210\u4e3a\u56fa\u6709\u673a\u68b0\u7279\u6027\u3002

    \u4e3a\u4ec0\u4e48\u8fd9\u91cc\u5b58\u5728\u540c\u4e00\u4e2a\u8f6c\u77e9\u5bf9\u5e94\u4e24\u79cd\u8f6c\u901f\u7684\u60c5\u51b5\uff1f\u5efa\u8bae\u628a\u56fe\u65cb\u8f6c90\u5ea6\uff0c\u5c31\u53d8\u6210\u4e86\u8f6c\u5dee\u7387\u548c\u8f6c\u77e9\u7684\u5173\u7cfb\uff0c\u8fd9\u6837\u5c31\u5f88\u597d\u7406\u89e3\u4e86\u3002

    \u8f6c\u901f\u6700\u5927\u7684\u70b9\u5bf9\u5e94\u7684\u8f6c\u901f\u5c31\u662f\\(n_s\\)\uff0c\u8fd9\u65f6\u8f6c\u5dee\u7387\u4e3a0\uff0c\u7535\u78c1\u8f6c\u77e9\u4e5f\u4e3a0\uff0c\u540c\u6837\u7684\uff0c\u8f6c\u901f\u4e3a0\u7684\u65f6\u5019\uff0c\u8f6c\u5dee\u7387\u4e3a1\uff0c\u8f93\u51fa\u7684\u8f6c\u77e9\u4e3a\\(T_{st}\\)

    \u4e34\u754c\u8f6c\u77e9\u548c\u4e34\u754c\u8f6c\u5dee

    \u6211\u4eec\u6700\u5173\u5173\u5fc3\u7684\u662f\u6781\u503c\u70b9\uff0c\u8fd9\u4e2a\u70b9\u7684\u8868\u8fbe\u5f0f\u53ef\u4ee5\u7528\u6c42\u5bfc\u5f97\u5230\uff0c\u56e0\u4e3a\u539f\u8fb9\u7684\u94dc\u8017\u6bd4\u8f83\u5c0f\uff0c\u8fdb\u4e00\u6b65\u5206\u6790\uff0c\u53ef\u4ee5\u5f97\u5230\uff1a

    \\[ \\begin{align*} T_{em} &\\propto K\\left(\\frac{U_1}{f_1}\\right)^2\\\\ s_m &\\approx \\frac{R_2'}{X_{1\\sigma} + X_{2\\sigma}'} \\end{align*} \\]

    \u6700\u5927\u8f6c\u77e9\u4e0e\u7535\u538b\u7684\u5e73\u65b9\u6210\u6b63\u6bd4\uff0c\u4e0e\u8f6c\u5b50\u7535\u963b\u65e0\u5173\u3002

    \u6700\u5927\u8f6c\u77e9

    \u6700\u5927\u8f6c\u77e9\u662f\u7535\u673a\u672c\u8eab\u7684\u7279\u6027\u53c2\u6570\u4e0e\u5916\u52a0\u8d1f\u8f7d\u65e0\u5173\uff0c\u4ec5\u4e0e\u76f8\u5173\u7535\u673a\u53c2\u6570\u6709\u5173\uff1a

    \u4e34\u754c\u8f6c\u5dee\u4e0e\u8f6c\u5b50\u7535\u963b\u6210\u6b63\u6bd4\uff0c\u4e0e\u7535\u538b\u5927\u5c0f\u65e0\u5173\u3002

    \u4e34\u754c\u8f6c\u5dee

    \u8d77\u52a8\u8f6c\u77e9

    \u7535\u673a\u521a\u542f\u52a8\u7684\u65f6\u5019\u7684\u8f6c\u77e9\u4e3a\u8d77\u52a8\u8f6c\u77e9\uff0c\u542f\u52a8\u8f6c\u77e9\u662f\u7535\u673a\u53c2\u6570\u76f8\u5173\u7684\u7535\u673a\u7279\u6027\uff0c\u548c\u8f6c\u5b50\u6240\u5e26\u7684\u8d1f\u8f7d\u65e0\u5173\u3002

    \u8d77\u52a8\u8f6c\u77e9

    \u8fc7\u8f7d\u80fd\u529b

    \u5b9a\u4e49\u5982\u4e0b\uff1a

    \\[ k_m = \\frac{T_{max}}{T_{N}} \\] \u603b\u7ed3 \u8f6c\u5b50\u7535\u963b\\(R_2'\\) \u7535\u538b\\(U_1\\) \u6700\u5927\u8f6c\u77e9 \\(T_{max}\\) \u65e0\u5173 \u5e73\u65b9\u6210\u6b63\u6bd4 \u4e34\u754c\u8f6c\u5dee\u7387 \\(s_m\\) \u6210\u6b63\u6bd4 \u65e0\u5173 \u8d77\u52a8\u8f6c\u77e9 \\(T_{st}\\) \u9002\u5f53\u589e\u52a0\u7535\u963b\u53ef\u589e\u52a0 \u5e73\u65b9\u6210\u6b63\u6bd4"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u4eba\u4e3a\u673a\u68b0\u7279\u6027","title":"\u4eba\u4e3a\u673a\u68b0\u7279\u6027","text":"

    \u4e3a\u4ec0\u4e48\u4e0d\u8003\u8651\u63d0\u5347\u7535\u538b

    \u7531\u4e8e\u4e0d\u80fd\u8ba9\u7535\u673a\u8fdb\u5165\u6b64\u78c1\u9971\u548c\u533a\uff0c\u6240\u4ee5\u53ea\u80fd\u964d\u4f4e\u7aef\u7535\u538b\u3002

    \u6362\u53e5\u8bdd\u8bf4\uff0c\u5c31\u662f\u63d0\u5347\u7535\u538b\u4e4b\u540e\uff0c\u8fdb\u5165\u9971\u548c\u533a\uff0c\u52b1\u78c1\u7535\u6d41\u589e\u5927\uff0c\u5f15\u8d77\u529f\u7387\u56e0\u6570\u964d\u4f4e\u3002

    \u76f8\u5173\u5206\u6790\u5c31\u5728\u4e0a\u9762\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u4e09\u76f8\u5f02\u6b65\u7535\u673a\u7684\u8d77\u52a8","title":"\u4e09\u76f8\u5f02\u6b65\u7535\u673a\u7684\u8d77\u52a8","text":"

    \u8d77\u52a8\u9700\u8981\u6ee1\u8db3\u7684\u6761\u4ef6\uff1a

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u964d\u538b\u8d77\u52a8","title":"\u964d\u538b\u8d77\u52a8","text":"

    \u56e0\u4e3a\u7535\u52a8\u673a\u7684\u8d77\u52a8\u7535\u6d41\u662f\u548c\u7535\u538b\u6210\u6b63\u6bd4\u7684\uff0c\u6240\u4ee5\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u964d\u4f4e\u7535\u538b\u6765\u964d\u4f4e\u8d77\u52a8\u7535\u6d41\u3002

    \u4f46\u968f\u4e4b\u8d77\u52a8\u8f6c\u77e9\u4e5f\u4f1a\u964d\u4f4e\uff0c\u6240\u4ee5\u8fd9\u79cd\u65b9\u6cd5\u53ea\u9002\u5408\u8f7b\u8f7d\u6216\u7a7a\u8f7d\u3002

    Y-\u25b3\u8d77\u52a8

    \u8fd9\u79cd\u65b9\u6cd5\u6cd5\u53ea\u9002\u7528\u4e8e\u6b63\u5e38\u8fd0\u884c\u65f6\u5b9a\u5b50\u7ed5\u7ec4\u4e3a\u4e09\u89d2\u5f62(\u25b3)\u63a5\u6cd5\u7684\u5f02\u6b65\u7535\u52a8\u673a\u3002

    \u81ea\u8026\u53d8\u538b\u5668\u8d77\u52a8

    \u81ea\u8026\u53d8\u538b\u5668\u53d8\u6bd4\u4e3a \\(k=\\frac{N_1}{N_2}\\)\uff0c\u5219\u8d77\u52a8\u7535\u6d41\u548c\u8d77\u52a8\u8f6c\u77e9\u90fd\u662f\u6b63\u5e38\u8fd0\u884c\u65f6\u7684 \\(\\frac{1}{k^2}\\)\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u4e32\u7535\u963b\u8d77\u52a8","title":"\u4e32\u7535\u963b\u8d77\u52a8","text":"

    \u7ed5\u7ebf\u578b\u5f02\u6b65\u7535\u52a8\u673a\u53ea\u8981\u5728\u8f6c\u5b50\u7535\u8def\u4e2d\u4e32\u63a5\u6070\u5f53\u5927\u5c0f\u7684\u7535\u963b\uff0c\u5c31\u53ef\u4ee5\u51cf\u5c0f\u8d77\u52a8\u7535\u6d41\uff0c\u540c\u65f6\u8fd8\u589e\u5927\u4e86\u8d77\u52a8\u8f6c\u77e9\uff0c\u9002\u7528\u4e8e\u91cd\u8f7d\u6216\u6ee1\u8f7d\u7684\u60c5\u51b5\u3002\u3001

    \u5206\u7ea7\u4e32\u7535\u963b

    \u539f\u7406\u76f4\u89c2\uff0c\u4e0d\u518d\u8d58\u8ff0\u3002

    \u4e32\u63a5\u9891\u654f\u53d8\u963b\u5668\u8d77\u52a8

    \u672c\u8d28\u539f\u7406\uff1a

    \\[ f_2 = sf_1 \\]

    \u9891\u654f\u53d8\u963b\u5668\u7684\u963b\u503c\u968f\u7740\u9891\u7387\u7684\u53d8\u5316\u800c\u53d8\u5316\uff0c\u6240\u4ee5\u53ef\u4ee5\u7528\u6765\u8c03\u8282\u7535\u963b\u503c\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u5f02\u6b65\u7535\u673a\u7684\u8c03\u901f","title":"\u5f02\u6b65\u7535\u673a\u7684\u8c03\u901f","text":"\\[ \\begin{align*} n_s &= \\frac{60f_1}{p}\\\\ n &= n_s(1-s) = \\frac{60f_1}{p}(1-s) \\end{align*} \\]"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u53d8\u9891\u8c03\u901f","title":"\u53d8\u9891\u8c03\u901f","text":"

    AC-DC-AC

    \u4e3b\u78c1\u901a\u5bf9\u7535\u673a\u8fd0\u884c\u7684\u5f71\u54cd

    \u4e3b\u78c1\u901a\u589e\u52a0\uff0c\u5f15\u8d77\u78c1\u8def\u7684\u8fc7\u5206\u9971\u548c\uff1a

    \u4e3b\u78c1\u901a\u51cf\u5c0f\uff1a

    \\[ U_1 \\approx E_1 = 4.44f_1N_1\\Phi_m k_{\\omega1} \\]

    \u4fdd\u6301\u4e3b\u78c1\u901a\u4e0d\u53d8\uff0c\u8c03\u8282\u9891\u7387\uff0c\u540c\u65f6\u964d\u4f4e\u7535\u538b\uff0c\u53ef\u4ee5\u5b9e\u73b0\u8c03\u901f\u3002

    \u5173\u952e\u5c31\u662f\u4fdd\u6301\\(U_1/f_1\\)\u4e3a\u5e38\u6570\u3002

    \u786c\u5ea6\u4e0d\u53d8\uff0c\u5f88\u9002\u5408\u6052\u8f6c\u77e9\u7684\u573a\u666f\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u53d8\u6781\u8c03\u901f\u6539\u53d8\u5b9a\u5b50\u4fa7\u7ed5\u7ec4\u7684\u6781\u5bf9\u6570","title":"\u53d8\u6781\u8c03\u901f\u2014\u2014\u6539\u53d8\u5b9a\u5b50\u4fa7\u7ed5\u7ec4\u7684\u6781\u5bf9\u6570","text":"

    \u53ea\u9002\u7528\u4e8e\u9f20\u7b3c\u578b\u5f02\u6b65\u7535\u673a\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u6539\u53d8\u8f6c\u5dee\u7387\u8c03\u901f","title":"\u6539\u53d8\u8f6c\u5dee\u7387\u8c03\u901f","text":"

    \u548c\u542f\u52a8\u7c7b\u4f3c\uff0c\u4e00\u4e2a\u662f\u964d\u4f4e\u7535\u538b\uff0c\u4e00\u4e2a\u662f\u4e32\u7535\u963b\u3002

    \u7279\u70b9\uff1a

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u8f6c\u5b50\u4e32\u7535\u963b\u8c03\u901f","title":"\u8f6c\u5b50\u4e32\u7535\u963b\u8c03\u901f","text":"

    \u5e26\u6052\u8f6c\u77e9\u8d1f\u8f7d\u65f6\u82e5\u589e\u5927\u6240\u4e32\u7535\u963b\uff0c\u7535\u673a\u7684\u8f6c\u901f\u4f1a\u964d\u4f4e\uff0c\u8f6c\u5dee\u7387\u589e\u5927\u3002

    \\[ \\frac{R_2'}{s} = \\frac{R_2' + R_\u4e32}{s'} \\]

    \u7535\u6e90\u7535\u538b\u4e00\u5b9a\uff0c\u8f6c\u5b50\u8d3f\u8d42\u4e32\u7535\u963b\u8c03\u901f\u7684\u65f6\u5019\uff0c\u8f6c\u5b50\u7535\u6d41\u53ef\u7ef4\u6301\u4e0d\u53d8\uff0c\u529f\u7387\u56e0\u6570\u4e0d\u53d8\uff0c\u4ece\u5b9a\u5b50\u4fa7\u8f93\u5165\u7684\u529f\u7387\u4e0d\u53d8\u3002

    \u6539\u53d8\u8f6c\u5dee\u7387\u53ea\u662f\u6539\u53d8\u4e86\u7535\u78c1\u529f\u7387\u5728\u94dc\u8017\u548c\u673a\u68b0\u4e4b\u95f4\u7684\u5206\u914d\uff0c\u603b\u503c\u662f\u4e0d\u53d8\u7684\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u5f02\u6b65\u7535\u673a\u7684\u5236\u52a8","title":"\u5f02\u6b65\u7535\u673a\u7684\u5236\u52a8","text":"

    \u4e3b\u8981\u5206\u4e3a\u673a\u68b0\u5236\u52a8\u548c\u7535\u6c14\u5236\u52a8\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u80fd\u8017\u5236\u52a8","title":"\u80fd\u8017\u5236\u52a8","text":"

    \u5c06\u5b9a\u5b50\u7ed5\u7ec4\u4ece\u4ea4\u6d41\u7535\u7f51\u8131\u79bb\uff0c\u5e76\u7acb\u5373\u901a\u5165\u76f4\u6d41\u7535\u6d41\uff0c\u5b9a\u5b50\u7ed5\u7ec4\u4ea7\u751f\u9759\u6b62\u7684\u6052\u5b9a\u78c1\u573a\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u53cd\u63a5\u5236\u52a8","title":"\u53cd\u63a5\u5236\u52a8","text":""},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u56de\u9988\u5236\u52a8","title":"\u56de\u9988\u5236\u52a8","text":"

    \u8f6c\u901f\u8d85\u8fc7\u65cb\u8f6c\u78c1\u573a\u540c\u6b65\u8f6c\u901f\uff0c\u53d1\u7535\u673a\u72b6\u6001\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u672c\u7ae0\u4f5c\u4e1a","title":"\u672c\u7ae0\u4f5c\u4e1a","text":"This browser does not support PDFs"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/5%E7%94%B5%E6%9C%BA%E6%8E%A7%E5%88%B6/","title":"\u7535\u673a\u7684\u7ee7\u7535-\u63a5\u89e6\u63a7\u5236","text":"

    \u6ce8\u610f

    \u8003\u8bd5\u5f62\u5f0f\u4e3a\u8bbe\u8ba1\u7535\u8def\u56fe

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/5%E7%94%B5%E6%9C%BA%E6%8E%A7%E5%88%B6/#\u63a7\u5236\u7528\u4f4e\u538b\u7535\u5668","title":"\u63a7\u5236\u7528\u4f4e\u538b\u7535\u5668","text":"

    AC1000V DC1200V \u5206\u4e3a\u9ad8\u538b\u63a7\u5236\u7535\u5668\u3001\u4f4e\u538b\u63a7\u5236\u7535\u5668

    \u6211\u4eec\u7814\u7a76\u4f4e\u538b\u7535\u5668\u3002

    \u5206\u7c7b\uff1a

    \u5f00\u5173\u5207\u7684\u662f\u706b\u7ebf\u3002

    \u4e0b\u9762\u662f\u63a7\u5236\u5668\u90e8\u5206\u3002\u52a8\u5408\u548c\u52a8\u65ad\uff0c\u9014\u4e2d\u7684\u662f\u52a8\u5408\u5f00\u5173\u3002

    \u63a5\u89e6\u5668\u7684\u6280\u672f\u4f9d\u636e\uff0c\u5305\u62ec\u989d\u5b9a\u7535\u538b\u548c\u989d\u5b9a\u7535\u6d41\uff0c\u4f7f\u7528\u7684\u90fd\u662f\u6709\u6548\u503c\uff0c\u800c\u4e14\u4ea4\u6d41\u548c\u76f4\u6d41\u7565\u6709\u4e0d\u540c\u3002

    \u7ee7\u7535\u5668\u3001\u4e2d\u95f4\u7ee7\u7535\u5668\uff08\u7565\u8fc7\uff09

    \u7ee7\u7535\u5668\u7684\u5b9a\u4e49\uff1a

    \u7528\u4e8e\u81ea\u52a8\u63a7\u5236\u7cfb\u7edf\u548c\u901a\u4fe1\u8bbe\u5907\u7684\u4e00\u79cd\u7535\u5668\u3002\u5f53\u7535\u538b\u3001\u7535\u6d41\u3001\u6e29\u5ea6\u3001\u538b\u529b\u7b49\u8fbe\u5230\u3001\u8d85\u8fc7\u6216\u4f4e\u4e8e\u9884\u5b9a\u503c\u65f6\uff0c\u7ee7\u7535\u5668\u4f1a\u63a5\u901a\u6216\u4e2d\u65ad\u7535\u8def\uff0c\u5bf9\u8bbe\u5907\u8d77\u63a7\u5236\u548c\u4fdd\u62a4\u4f5c\u7528\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/5%E7%94%B5%E6%9C%BA%E6%8E%A7%E5%88%B6/#\u7535\u6c14\u63a7\u5236\u7ebf\u8def\u57fa\u7840","title":"\u7535\u6c14\u63a7\u5236\u7ebf\u8def\u57fa\u7840","text":"

    \u8fd9\u4e2a\u5730\u65b9\u8bb2\u7684\u5c31\u662f\u600e\u4e48\u7528\u5f00\u5173\u5b9e\u73b0\u903b\u8f91\u8fd0\u7b97\u3002

    \u6ce8\u610f

    \u8fd9\u4e00\u90e8\u5206\u9700\u8981\u505a\u5230\u903b\u8f91\u7684\u5217\u5199\u548c\u753b\u7535\u8def\u56fe\u3002\u56e0\u4e3a\u662f\u534a\u5f00\u5377\uff0c\u8fd8\u662f\u6bd4\u8f83\u7b80\u5355\u7684\uff0c\u4e3b\u8981\u662f\u7406\u89e3\u5176\u4e2d\u7684\u610f\u601d\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/5%E7%94%B5%E6%9C%BA%E6%8E%A7%E5%88%B6/#\u57fa\u672c\u903b\u8f91","title":"\u57fa\u672c\u903b\u8f91","text":"

    \u4e0e\u903b\u8f91\uff1a\u5f00\u5173\u7684\u4e32\u8054\uff1b\u6216\u903b\u8f91\uff1a\u5f00\u5173\u7684\u5e76\u8054\uff1b\u975e\u903b\u8f91\uff1a\u52a8\u65ad\u5f00\u5173\uff1b

    \u7981\u903b\u8f91\uff1b

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/5%E7%94%B5%E6%9C%BA%E6%8E%A7%E5%88%B6/#\u9501\u5b9a\u903b\u8f91","title":"\u9501\u5b9a\u903b\u8f91","text":"

    \u81ea\u9501\u903b\u8f91\uff1a\u677e\u5f00\u5f00\u5173\u4e4b\u540e\uff0cY\u7684\u72b6\u6001\u4fdd\u6301\u4e0d\u53d8\uff1b

    \u4e92\u9501\u903b\u8f91\uff1a\u4e00\u4e2a\u7535\u5668\u88ab\u9501\u6b7b\u4e4b\u540e\uff0c\u53e6\u5916\u4e00\u4e2a\u7535\u5668\u4e5f\u88ab\u9501\u6b7b\uff1b

    \u8fde\u9501\uff1b\u8bb0\u5fc6\u903b\u8f91\uff1b\u5ef6\u8fdf\u903b\u8f91\uff1b

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/5%E7%94%B5%E6%9C%BA%E6%8E%A7%E5%88%B6/#\u903b\u8f91\u8bbe\u8ba1\u6cd5","title":"\u903b\u8f91\u8bbe\u8ba1\u6cd5","text":"

    \u8fd9\u4e2a\u5730\u65b9\u5c31\u548c\u6570\u5b57\u7535\u8def\u91cc\u9762\u5b66\u7684\u4e00\u6837\uff0c\u5c31\u662f\u5316\u7b80\u771f\u503c\u8868\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/5%E7%94%B5%E6%9C%BA%E6%8E%A7%E5%88%B6/#\u4e09\u76f8\u5f02\u6b65\u7535\u52a8\u673a\u7684\u7ee7\u7535-\u63a5\u89e6\u63a7\u5236","title":"\u4e09\u76f8\u5f02\u6b65\u7535\u52a8\u673a\u7684\u7ee7\u7535-\u63a5\u89e6\u63a7\u5236","text":"

    \u8fd9\u91cc\u4e5f\u5c31\u662f\u5bf9\u524d\u9762\u5b66\u8fc7\u7684\u5f02\u6b65\u7535\u52a8\u673a\u8fdb\u884c\u6f14\u793a\uff0c\u8bb2\u5f97\u5f88\u5feb\uff0c\u770bppt\u5c31\u884c\u4e86\u3002

    \u603b\u7ed3

    \u8fd9\u4e2a\u90e8\u5206\u603b\u4f53\u6ca1\u600e\u4e48\u8bb2\uff0c\u5927\u6982\u770b\u770bppt\u5c31\u884c\u4e86\uff0c\u91cd\u5728\u7406\u89e3\u3002

    "},{"location":"Notes/test/","title":"Test","text":"

    This is a black document. Just a test.

    print(\"Hello, world!\")\n
    "},{"location":"Notes/test/#this-is-a-title","title":"This is a title","text":""},{"location":"Notes/test/#definition-list","title":"Definition List","text":""},{"location":"Notes/test/#footnotes","title":"Footnotes","text":"

    This is a piece of text1\u3002

    Title

    This is the content of the footnote.

    1. This is the content of the footnote.\u00a0\u21a9

    "},{"location":"Notes/%E4%BF%A1%E6%81%AF%E8%AE%BA%E4%B8%8E%E7%BC%96%E7%A0%81/2%E7%A6%BB%E6%95%A3%E4%BF%A1%E6%BA%90%E5%8F%8A%E5%85%B6%E4%BF%A1%E6%81%AF%E6%B5%8B%E5%BA%A6/","title":"\u79bb\u6563\u5e73\u7a33\u4fe1\u6e90","text":"

    Note

    \u8fd8\u5728\u5efa\u8bbe\u4e2d\uff0c\u656c\u8bf7\u671f\u5f85\u3002

    \u591a\u7b26\u53f7\u79bb\u6563\u4fe1\u6e90\uff1a

    \u591a\u7b26\u53f7\u79bb\u6563\u4fe1\u6e90\u8f93\u51fa\u7684\u6d88\u606f\u662f\u6309\u7167\u4e00\u5b9a\u6982\u7387\u9009\u53d6\u7684\u7b26\u53f7\u5e8f\u5217\uff0c\u5728\u65f6\u95f4\u5e8f\u5217\u7684\u6bcf\u4e00\u4e2a\u65f6\u95f4\u5355\u4f4d \\(k(k=1,2,\\cdots\\)\uff0c\u90fd\u53ef\u4ee5\u7531\u4e00\u4e2a\u968f\u673a\u53d8\u91cf \\(X_k\\) \u6765\u8868\u793a\u3002

    \u591a\u7b26\u53f7\u79bb\u6563\u4fe1\u6e90\u53ef\u7528\u968f\u673a\u53d8\u91cf\u5e8f\u5217 \\(\\{X_k\\}\\) \u7ec4\u6210\u7684\u968f\u673a\u5e8f\u5217\uff0c\u5373\u968f\u673a\u77e2\u91cf \\(X=\\{X_1,X_2,\\cdots,X_n\\}\\) \u6765\u8868\u793a\u3002

    "},{"location":"Notes/%E4%BF%A1%E6%81%AF%E8%AE%BA%E4%B8%8E%E7%BC%96%E7%A0%81/2%E7%A6%BB%E6%95%A3%E4%BF%A1%E6%BA%90%E5%8F%8A%E5%85%B6%E4%BF%A1%E6%81%AF%E6%B5%8B%E5%BA%A6/#\u79bb\u6563\u5e73\u7a33\u4fe1\u6e90\u7684\u6570\u5b66\u6a21\u578b","title":"\u79bb\u6563\u5e73\u7a33\u4fe1\u6e90\u7684\u6570\u5b66\u6a21\u578b","text":""},{"location":"Notes/%E4%BF%A1%E6%81%AF%E8%AE%BA%E4%B8%8E%E7%BC%96%E7%A0%81/2%E7%A6%BB%E6%95%A3%E4%BF%A1%E6%BA%90%E5%8F%8A%E5%85%B6%E4%BF%A1%E6%81%AF%E6%B5%8B%E5%BA%A6/#\u4e00\u822c\u968f\u673a\u5e8f\u5217","title":"\u4e00\u822c\u968f\u673a\u5e8f\u5217","text":"

    \u4e00\u822c\u60c5\u51b5\u4e0b\uff0c\u4fe1\u6e90\u7684\u6982\u7387\u5206\u5e03\u4e0e\u65f6\u95f4\u6709\u5173\uff0c\u4e0d\u540c\u65f6\u95f4\u7531\u4e0d\u540c\u7684\u6982\u7387\u5206\u5e03\u3002

    "},{"location":"Notes/%E4%BF%A1%E6%81%AF%E8%AE%BA%E4%B8%8E%E7%BC%96%E7%A0%81/2%E7%A6%BB%E6%95%A3%E4%BF%A1%E6%BA%90%E5%8F%8A%E5%85%B6%E4%BF%A1%E6%81%AF%E6%B5%8B%E5%BA%A6/#\u5e73\u7a33\u968f\u673a\u5e8f\u5217","title":"\u5e73\u7a33\u968f\u673a\u5e8f\u5217","text":"

    \u5e8f\u5217\u7684\u7edf\u8ba1\u6027\u8d28\u4e0e\u65f6\u95f4\u7684\u63a8\u79fb\u65e0\u5173\uff0c\u5373\u4fe1\u6e90\u6240\u53d1\u7b26\u53f7\u5e8f\u5217\u7684\u6982\u7387\u5206\u5e03\u4e0e\u65f6\u95f4\u8d77\u70b9\u65e0\u5173\u3002

    "},{"location":"Notes/%E4%BF%A1%E6%81%AF%E8%AE%BA%E4%B8%8E%E7%BC%96%E7%A0%81/2%E7%A6%BB%E6%95%A3%E4%BF%A1%E6%BA%90%E5%8F%8A%E5%85%B6%E4%BF%A1%E6%81%AF%E6%B5%8B%E5%BA%A6/#\u79bb\u6563\u5e73\u7a33\u4fe1\u6e90\u7684\u6570\u5b66\u6a21\u578b_1","title":"\u79bb\u6563\u5e73\u7a33\u4fe1\u6e90\u7684\u6570\u5b66\u6a21\u578b","text":"

    \uff081\uff09\u4e00\u7ef4\u5e73\u7a33\u4fe1\u6e90

    \u82e5 \\(P(x_i)=P(x_j)=P(x)\\)\uff0c\u5219\u5e8f\u5217\u662f\u4e00\u7ef4\u5e73\u7a33\u7684\u3002\u4efb\u610f\u4e24\u4e2a\u4e0d\u540c\u65f6\u523b\u4fe1\u6e90\u53d1\u51fa\u4fe1\u53f7\u7684\u6982\u7387\u5206\u5e03\u5b8c\u5168\u76f8\u540c\u3002

    \\[ P(x_i=a_1) = P(x_j=a_1) = P(x=a_1) \\\\ P(x_i=a_2) = P(x_j=a_2) = P(x=a_2) \\]

    \uff082\uff09\u4e8c\u7ef4\u5e73\u7a33\u4fe1\u6e90

    \u5982\u679c\u8054\u5408\u6982\u7387\u5206\u5e03 \\(P(x_i,x_j)\\) \u4e0e\u65f6\u95f4\u65e0\u5173\uff0c\u5373\\(P(x_ix_{i+1}=P(x_jx_{j+1}\\)\uff0c\u5219\u4fe1\u6e90\u662f\u4e8c\u7ef4\u5e73\u7a33\u7684\u3002

    \uff083\uff09\u79bb\u6563\u5e73\u7a33\u4fe1\u6e90

    \u5982\u679c\u5404\u7ef4\u8054\u5408\u6982\u7387\u5206\u5e03\u5747\u4e0e\u65f6\u95f4\u8d77\u70b9\u65e0\u5173\uff0c\u5219\u4fe1\u6e90\u662f\u5b8c\u5168\u5e73\u7a33\u7684\u3002

    \u4e0b\u9762\u6211\u4eec\u5047\u5b9a\uff1a

    "},{"location":"Notes/%E6%9C%BA%E5%99%A8%E4%BA%BA%E6%8A%80%E6%9C%AF%E4%B8%8E%E5%AE%9E%E8%B7%B5/lab3/","title":"lab3 \u673a\u68b0\u81c2\u6b63\u8fd0\u52a8\u5b66\u6c42\u89e3","text":""},{"location":"Notes/%E6%9C%BA%E5%99%A8%E4%BA%BA%E6%8A%80%E6%9C%AF%E4%B8%8E%E5%AE%9E%E8%B7%B5/lab3/#\u5199\u51fazju-i\u578b\u684c\u9762\u673a\u68b0\u81c2\u7684dh\u53c2\u6570","title":"\u5199\u51faZJU-I\u578b\u684c\u9762\u673a\u68b0\u81c2\u7684DH\u53c2\u6570","text":"

    \u6839\u636e\u8fd9\u4e2a\u56fe\uff1a

    \u518d\u7ed3\u5408\u6807\u51c6DH\u53c2\u6570\u7684\u5b9a\u4e49\uff0c\u53ef\u4ee5\u5199\u51faD-H\u53c2\u6570\u8868\uff1a

    Frame No. \\(a_i\\) \\(\\alpha_i\\) \\(d_i\\) \\(\\theta_i\\) 1 0 -90 230 \\(\\theta_1\\) 2 185 0 0 \\(\\theta_2\\left(-90\\right)\\) 3 170 0 0 \\(\\theta_3\\) 4 0 90 23 \\(\\theta_4\\left(90\\right)\\) 5 0 90 77 \\(\\theta_5\\left(90\\right)\\) 6 0 0 85.5 \\(\\theta_6\\)"},{"location":"Notes/%E6%9C%BA%E5%99%A8%E4%BA%BA%E6%8A%80%E6%9C%AF%E4%B8%8E%E5%AE%9E%E8%B7%B5/lab3/#\u5199\u51fazju-i\u578b\u673a\u68b0\u81c2\u7684\u6b63\u8fd0\u52a8\u5b66\u89e3\u91c7\u7528xyz\u6b27\u62c9\u89d2\u8868\u793a\u672b\u7aef\u6267\u884c\u5668\u59ff\u6001","title":"\u5199\u51faZJU-I\u578b\u673a\u68b0\u81c2\u7684\u6b63\u8fd0\u52a8\u5b66\u89e3\uff0c\u91c7\u7528XY\u2019Z\u2019\u6b27\u62c9\u89d2\u8868\u793a\u672b\u7aef\u6267\u884c\u5668\u59ff\u6001","text":"

    \u901a\u8fc7D-H\u53c2\u6570\u8868\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5199\u51fa\u76f8\u5e94\u7684 Transformation Matrix.

    \u6839\u636e\u8fd9\u4e9b\u77e9\u9635\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u901a\u8fc7\u77e9\u9635\u4e58\u6cd5\u6c42\u89e3\u672b\u7aef\u6267\u884c\u5668\u7684\u4f4d\u7f6e\u548c\u59ff\u6001\u3002\u5176\u4e2d\uff0c\u77e9\u9635\u7684\u6700\u540e\u4e00\u5217\u7684\u524d\u4e09\u884c\u8868\u793a\u5176\u4f4d\u7f6e\u5750\u6807\uff0c\u5de6\u4e0a\u89d2\\(3\\times3\\)\u7684\u5b50\u77e9\u9635\u5c31\u662f\u5b83\u7684\u65cb\u8f6c\u77e9\u9635\uff0c\u901a\u8fc7\u8fd9\u4e2a\u53ef\u4ee5\u6c42\u89e3\u51fa\u6700\u540e\u7684\u59ff\u6001\u3002

    \u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u901a\u8fc7\u6b27\u62c9\u89d2\u8868\u793a\u7684\u65f6\u5019\uff0c\u5176\u6570\u503c\u548c\u65cb\u8f6c\u987a\u5e8f\u6709\u5f88\u5927\u7684\u5173\u7cfb\u3002

    \u5728\u6211\u4eec\u4e0a\u8bfe\u7684\u65f6\u5019\u5b66\u7684\u662fX\u2192Y\u2192Z\u7684\u65cb\u8f6c\u987a\u5e8f\uff0c\u800c\u4eff\u771f\u8f6f\u4ef6Coppelia\u4e2d\u7528\u7684\u662fZ\u2192Y\u2192X\u7684\u65cb\u8f6c\u987a\u5e8f\uff0c\u5bf9\u5e94\u7684\u7ed3\u679c\u662f\u4e0d\u4e00\u6837\u7684\u3002

    \u6839\u636e\u4e0a\u8bfe\u5b66\u7684\u4e1c\u897f\uff0c\u6211\u4eec\u5206\u522b\u6709\uff1a

    \\[ \\begin{align*} R_x &= \\left(\\begin{array}{ccc} 1 & 0 & 0\\\\ 0 & \\cos\\left(a_{1}\\right) & -\\sin\\left(a_{1}\\right)\\\\ 0 & \\sin\\left(a_{1}\\right) & \\cos\\left(a_{1}\\right) \\end{array}\\right)\\\\ R_y &= \\left(\\begin{array}{ccc} \\cos\\left(a_{2}\\right) & 0 & \\sin\\left(a_{2}\\right)\\\\ 0 & 1 & 0\\\\ -\\sin\\left(a_{2}\\right) & 0 & \\cos\\left(a_{2}\\right) \\end{array}\\right)\\\\ R_z &= \\left(\\begin{array}{ccc} \\cos\\left(a_{3}\\right) & -\\sin\\left(a_{3}\\right) & 0\\\\ \\sin\\left(a_{3}\\right) & \\cos\\left(a_{3}\\right) & 0\\\\ 0 & 0 & 1 \\end{array}\\right) \\end{align*} \\]

    \u8fd9\u4e09\u4e2a\u77e9\u9635\u5c31\u662f\u5206\u522b\u7ed5X\uff0cY\uff0cZ\u8f74\u7684\u65cb\u8f6c\u77e9\u9635\uff08\\(a_1,a_2,a_3\\)\u5206\u522b\u8868\u793a\u5176\u7ed5X\uff0cY\uff0cZ\u8f74\u65cb\u8f6c\u7684\u89d2\u5ea6\uff09\uff0c\u800cresult1\u548cresult2\u5206\u522b\u8868\u793a\u4e86\u4e24\u79cd\u4e0d\u540c\u7684\u65cb\u8f6c\u987a\u5e8f\u3002

    \u6211\u4eec\u53ef\u4ee5\u4f7f\u7528MATLAB\u5f88\u65b9\u4fbf\u5730\u6c42\u89e3\u51fa\u65cb\u8f6c\u77e9\u9635\uff1a

    \u5f53\u6309\u7167X\u2192Y\u2192Z\u7684\u987a\u5e8f\u65cb\u8f6c\u65f6\uff0c\u65cb\u8f6c\u77e9\u9635\u662f\uff1a

    \\[ \\left(\\begin{array}{ccc} \\cos\\left(a_{2}\\right)\\,\\cos\\left(a_{3}\\right) & -\\cos\\left(a_{2}\\right)\\,\\sin\\left(a_{3}\\right) & \\sin\\left(a_{2}\\right)\\\\ \\cos\\left(a_{1}\\right)\\,\\sin\\left(a_{3}\\right)+\\cos\\left(a_{3}\\right)\\,\\sin\\left(a_{1}\\right)\\,\\sin\\left(a_{2}\\right) & \\cos\\left(a_{1}\\right)\\,\\cos\\left(a_{3}\\right)-\\sin\\left(a_{1}\\right)\\,\\sin\\left(a_{2}\\right)\\,\\sin\\left(a_{3}\\right) & -\\cos\\left(a_{2}\\right)\\,\\sin\\left(a_{1}\\right)\\\\ \\sin\\left(a_{1}\\right)\\,\\sin\\left(a_{3}\\right)-\\cos\\left(a_{1}\\right)\\,\\cos\\left(a_{3}\\right)\\,\\sin\\left(a_{2}\\right) & \\cos\\left(a_{3}\\right)\\,\\sin\\left(a_{1}\\right)+\\cos\\left(a_{1}\\right)\\,\\sin\\left(a_{2}\\right)\\,\\sin\\left(a_{3}\\right) & \\cos\\left(a_{1}\\right)\\,\\cos\\left(a_{2}\\right) \\end{array}\\right) \\]

    \u800c\u6309\u7167Z\u2192Y\u2192X\u7684\u987a\u5e8f\u65cb\u8f6c\u7684\u65f6\u5019\uff0c\u65cb\u8f6c\u77e9\u9635\u662f\uff1a

    \\[ \\left(\\begin{array}{ccc} \\cos\\left(a_{2}\\right)\\,\\cos\\left(a_{3}\\right) & \\cos\\left(a_{3}\\right)\\,\\sin\\left(a_{1}\\right)\\,\\sin\\left(a_{2}\\right)-\\cos\\left(a_{1}\\right)\\,\\sin\\left(a_{3}\\right) & \\sin\\left(a_{1}\\right)\\,\\sin\\left(a_{3}\\right)+\\cos\\left(a_{1}\\right)\\,\\cos\\left(a_{3}\\right)\\,\\sin\\left(a_{2}\\right)\\\\ \\cos\\left(a_{2}\\right)\\,\\sin\\left(a_{3}\\right) & \\cos\\left(a_{1}\\right)\\,\\cos\\left(a_{3}\\right)+\\sin\\left(a_{1}\\right)\\,\\sin\\left(a_{2}\\right)\\,\\sin\\left(a_{3}\\right) & \\cos\\left(a_{1}\\right)\\,\\sin\\left(a_{2}\\right)\\,\\sin\\left(a_{3}\\right)-\\cos\\left(a_{3}\\right)\\,\\sin\\left(a_{1}\\right)\\\\ -\\sin\\left(a_{2}\\right) & \\cos\\left(a_{2}\\right)\\,\\sin\\left(a_{1}\\right) & \\cos\\left(a_{1}\\right)\\,\\cos\\left(a_{2}\\right) \\end{array}\\right) \\]

    \u5728\u8fd9\u7bc7\u62a5\u544a\u4e2d\uff0c\u4e3a\u4e86\u548c\u4eff\u771f\u8f6f\u4ef6\u5bf9\u5e94\uff0c\u6211\u4eec\u7edf\u4e00\u91c7\u7528\u7b2c\u4e00\u79cd\u65cb\u8f6c\u77e9\u9635\u3002

    \u6240\u4ee5\uff0c\u5c31\u53ef\u4ee5\u901a\u8fc7\u8fd9\u4e2a\u65cb\u8f6c\u77e9\u9635\u6c42\u89e3\u6b27\u62c9\u89d2\uff1a

    # phi, theta, psi\u5206\u522b\u8868\u793a\u7ed5X\uff0cY\uff0cZ\u8f74\u65cb\u8f6c\u7684\u89d2\u5ea6\u3002\ndef T2eularAngle(T):\n    R = T[:3, :3]\n    location = T[:3, 3] / 1000\n    theta = math.asin(R[0, 2]) * 180 / pi\n    phi = math.atan2(-R[1, 2], R[2, 2]) * 180 / pi\n    psi = math.atan2(-R[0, 1], R[0, 0]) * 180 / pi\n    # \u62fc\u63a5\u5750\u6807\u548c\u89d2\u5ea6\n    return np.hstack((location, np.array([phi, theta, psi])))\n
    "},{"location":"Notes/%E6%9C%BA%E5%99%A8%E4%BA%BA%E6%8A%80%E6%9C%AF%E4%B8%8E%E5%AE%9E%E8%B7%B5/lab3/#\u8ba1\u7b97\u7ed3\u679c\u548c\u4eff\u771f\u7ed3\u679c\u7684\u5bf9\u6bd4","title":"\u8ba1\u7b97\u7ed3\u679c\u548c\u4eff\u771f\u7ed3\u679c\u7684\u5bf9\u6bd4","text":"

    \u5c06\u4ee5\u4e0b5\u7ec4\u5173\u8282\u89d2\u53c2\u6570\u5e26\u5165\u6b63\u8fd0\u52a8\u5b66\u89e3\uff0c\u8ba1\u7b97\u673a\u68b0\u81c2\u672b\u7aefTip\u70b9\u7684\u7a7a\u95f4\u4f4d\u7f6e\uff0c\u8ba1\u7b97\u672b\u7aef\u6267\u884c\u5668\u7684\u59ff\u6001\uff0c\u4ee5XY\u2019Z\u2019\u6b27\u62c9\u89d2\u8868\u793a\u7ed3\u679c:

    \u5b9e\u9a8c\u7ec4\u53f7 x y z \\(\\phi\\) \\(\\theta\\) \\(\\psi\\) 1 0.095 0.164 0.608 -104.50 -3.33 -154.29 2 0.246 0.254 0.347 -123.69 -25.66 -76.10 3 -0.097 0.246 0.460 -120.00 -60.00 -150.00 4 -0.271 0.209 0.473 -13.06 7.43 150.85 5 0.226 0.107 0.552 -148.00 36.35 -107.00

    \u8ba1\u7b97\u7ed3\u679c

    \u5b9e\u9a8c\u7ec4\u53f7 x y z \\(\\phi\\) \\(\\theta\\) \\(\\psi\\) 1 0.090 0.164 0.607 -104.54 -3.36 -154.30 2 0.245 0.254 0.347 -123.74 -25.69 -76.05 3 -0.097 0.246 0.460 -120.07 -60.00 -150.04 4 -0.272 0.209 0.472 -13.15 7.38 150.87 5 0.226 0.107 0.552 -148.05 36.31 -107.00

    \u4eff\u771f\u7ed3\u679c

    \u7531\u4e0a\u9762\u4e24\u4e2a\u8868\u53ef\u4ee5\u770b\u51fa\uff0c\u6211\u4eec\u6309\u7167\u6b63\u8fd0\u52a8\u5b66\u8ba1\u7b97\u51fa\u7684\u7ed3\u679c\u548c\u4eff\u771f\u8f6f\u4ef6\u8dd1\u51fa\u6765\u7684\u7ed3\u679c\u57fa\u672c\u4e0a\u662f\u4e00\u81f4\u7684\uff0c\u53ef\u80fd\u6709\u4e00\u4e9b\u8bef\u5dee\u5bfc\u81f4\u4eff\u771f\u8f6f\u4ef6\u7684\u7ed3\u679c\u548c\u6211\u4eec\u7684\u8ba1\u7b97\u6709\u4e00\u70b9\u4e0d\u4e00\u6837\u3002

    \u8fd9\u4e2a\u8fc7\u7a0b\u8fd8\u662f\u6bd4\u8f83\u7b80\u5355\u7684\uff0c\u4e5f\u5c31\u662f\u901a\u8fc7\u4e0a\u9762\u7684\u53d8\u6362\u77e9\u9635\u7b97\u51fa\u6765\u4e00\u4e2a\u603b\u7684\u9f50\u6b21\u53d8\u6362\u77e9\u9635\uff0c\u8fd9\u4e2a\u77e9\u9635\u91cc\u9762\u5305\u542b\u4e86\u672b\u7aef\u6267\u884c\u70b9\u7684\u4f4d\u7f6e\u548c\u59ff\u6001\u4fe1\u606f\uff0c\u6839\u636e\u4e00\u4e9b\u89c4\u5219\u5c31\u53ef\u4ee5\u628a\u8fd9\u4e2a\u77e9\u9635\u91cc\u9762\u8ba1\u7b97\u7684\u7ed3\u679c\u53d8\u6210\u6211\u4eec\u9700\u8981\u7684\u6837\u5b50\u3002

    \u6bd4\u8f83tricky\u7684\u4e24\u4e2a\u70b9\uff0c\u4e00\u4e2a\u5c31\u662f\u524d\u9762\u63d0\u5230\u7684\u65cb\u8f6c\u987a\u5e8f\uff0c\u53e6\u5916\u5c31\u662f\u9700\u8981\u628a\u8ba1\u7b97\u5f97\u5230\u7684\u5f27\u5ea6\u5236\u6362\u7b97\u6210\u89d2\u5ea6\u5236\u3002

    "},{"location":"Notes/%E6%9C%BA%E5%99%A8%E4%BA%BA%E6%8A%80%E6%9C%AF%E4%B8%8E%E5%AE%9E%E8%B7%B5/lab3/#\u9644\u4ef6\u6b63\u8fd0\u52a8\u5b66\u6e90\u4ee3\u7801python","title":"\u9644\u4ef6\uff1a\u6b63\u8fd0\u52a8\u5b66\u6e90\u4ee3\u7801\uff08python\uff09","text":"
    import numpy as np\nimport math\nfrom math import pi\n\ntheta = [pi/12, pi/12, pi/12, pi/12, pi/12, pi/12]\n\ntheta = np.array([theta[0], theta[1] - pi/2, theta[2], theta[3] + pi/2, theta[4] + pi/2, theta[5]])\n\na1, alpha1, d1 = 0, -pi/2, 230\na2, alpha2, d2 = 185, 0, 0\na3, alpha3, d3 = 170, 0, 0\na4, alpha4, d4 = 0, pi/2, 23\na5, alpha5, d5 = 0, pi/2, 77\na6, alpha6, d6 = 0, 0, 85.5\n\nDH = np.array([\n    [theta[0], d1, a1, alpha1],\n    [theta[1], d2, a2, alpha2],\n    [theta[2], d3, a3, alpha3],\n    [theta[3], d4, a4, alpha4],\n    [theta[4], d5, a5, alpha5],\n    [theta[5], d6, a6, alpha6]\n])\n\ndef T2eularAngle(T):\n    R = T[:3, :3]\n    location = T[:3, 3] / 1000\n    theta = math.asin(R[0, 2]) * 180 / pi\n    phi = math.atan2(-R[1, 2], R[2, 2]) * 180 / pi\n    psi = math.atan2(-R[0, 1], R[0, 0]) * 180 / pi\n    # \u62fc\u63a5\u5750\u6807\u548c\u89d2\u5ea6\n    return np.hstack((location, np.array([phi, theta, psi])))\n\ndef DH_matrix(theta, d, a, alpha):\n    return np.array([\n        [np.cos(theta), -np.sin(theta)*np.cos(alpha), np.sin(theta)*np.sin(alpha), a*np.cos(theta)],\n        [np.sin(theta), np.cos(theta)*np.cos(alpha), -np.cos(theta)*np.sin(alpha), a*np.sin(theta)],\n        [0, np.sin(alpha), np.cos(alpha), d],\n        [0, 0, 0, 1]\n    ])\n\n\ndef forward_kinematics(theta):\n    Total_T = np.eye(4)\n    for i in range(6):\n        theta_i = theta[i]\n        d_i = DH[i, 1]\n        a_i = DH[i, 2]\n        alpha_i = DH[i, 3]\n        Total_T = np.dot(Total_T, DH_matrix(theta_i, d_i, a_i, alpha_i))\n\n    result = T2eularAngle(Total_T)\n\n\n    return result\n\nif __name__ == '__main__':\n    result = forward_kinematics(theta)\n    print(result)\n
    "},{"location":"Notes/%E6%9C%BA%E5%99%A8%E4%BA%BA%E6%8A%80%E6%9C%AF%E4%B8%8E%E5%AE%9E%E8%B7%B5/lab4/","title":"lab4 \u673a\u68b0\u81c2\u9006\u8fd0\u52a8\u5b66\u6c42\u89e3","text":""},{"location":"Notes/%E6%9C%BA%E5%99%A8%E4%BA%BA%E6%8A%80%E6%9C%AF%E4%B8%8E%E5%AE%9E%E8%B7%B5/lab4/#\u9006\u8fd0\u52a8\u5b66\u89e3\u6790\u89e3","title":"\u9006\u8fd0\u52a8\u5b66\u89e3\u6790\u89e3","text":"

    \u6211\u4eec\u5df2\u77e5\u7684\u662f\u672b\u7aef\u7684\u4f4d\u59ff\\(T\\)\uff0c\u6ee1\u8db3\uff1a

    \\[ T = T_0^6 = T_1^0T_2^1T_3^2T_4^3T_5^4T_6^5 \\]

    \u6211\u4eec\u5047\u8bbe

    \\[ T = \\left(\\begin{array}{cccc} \\mathrm{nx} & \\mathrm{ox} & \\mathrm{ax} & \\mathrm{dx}\\\\ \\mathrm{ny} & \\mathrm{oy} & \\mathrm{ay} & \\mathrm{dy}\\\\ \\mathrm{nz} & \\mathrm{oz} & \\mathrm{az} & \\mathrm{dz}\\\\ 0 & 0 & 0 & 1 \\end{array}\\right) \\]

    \u5176\u4e2d\uff0c\\(T_0^6\\)\u662f\u672b\u7aef\u7684\u5168\u5c40\u4f4d\u59ff\uff0c\\(T_i^{i-1}\\)\u662f\u7b2c\\(i\\)\u4e2a\u5173\u8282\u7684\u53d8\u6362\u77e9\u9635\u3002

    \u901a\u8fc7\u8fd9\u91cc\uff0c\u53ef\u4ee5\u7b97\u51fa\\(T_6^1\\)\u6ee1\u8db3\uff1a

    \\[ T_6^1 = T_2^1T_3^2T_4^3T_5^4T_6^5 \\]

    \u4ee3\u5165\u4e0a\u9762\u7684\u53d8\u6362\u77e9\u9635\uff0c\u53ef\u4ee5\u5f97\u5230\uff1a

    \\[ T_6^1 = \\left(\\begin{array}{cccc} \\sin\\left(t_{2}+t_{3}+t_{4}\\right)\\,\\sin\\left(t_{6}\\right)-\\cos\\left(t_{2}+t_{3}+t_{4}\\right)\\,\\cos\\left(t_{6}\\right)\\,\\sin\\left(t_{5}\\right) & \\sin\\left(t_{2}+t_{3}+t_{4}\\right)\\,\\cos\\left(t_{6}\\right)+\\cos\\left(t_{2}+t_{3}+t_{4}\\right)\\,\\sin\\left(t_{5}\\right)\\,\\sin\\left(t_{6}\\right) & \\cos\\left(t_{2}+t_{3}+t_{4}\\right)\\,\\cos\\left(t_{5}\\right) & \\frac{17\\,\\sin\\left(t_{2}+t_{3}\\right)}{100}+\\frac{37\\,\\sin\\left(t_{2}\\right)}{200}-\\cos\\left(t_{5}\\right)\\,\\left(\\frac{171\\,\\sin\\left(t_{2}+t_{3}\\right)\\,\\sin\\left(t_{4}\\right)}{2000}-\\frac{171\\,\\cos\\left(t_{2}+t_{3}\\right)\\,\\cos\\left(t_{4}\\right)}{2000}\\right)+\\frac{77\\,\\cos\\left(t_{2}+t_{3}\\right)\\,\\sin\\left(t_{4}\\right)}{1000}+\\frac{77\\,\\sin\\left(t_{2}+t_{3}\\right)\\,\\cos\\left(t_{4}\\right)}{1000}\\\\ -\\cos\\left(t_{2}+t_{3}+t_{4}\\right)\\,\\sin\\left(t_{6}\\right)-\\sin\\left(t_{2}+t_{3}+t_{4}\\right)\\,\\cos\\left(t_{6}\\right)\\,\\sin\\left(t_{5}\\right) & \\sin\\left(t_{2}+t_{3}+t_{4}\\right)\\,\\sin\\left(t_{5}\\right)\\,\\sin\\left(t_{6}\\right)-\\cos\\left(t_{2}+t_{3}+t_{4}\\right)\\,\\cos\\left(t_{6}\\right) & \\sin\\left(t_{2}+t_{3}+t_{4}\\right)\\,\\cos\\left(t_{5}\\right) & \\frac{77\\,\\sin\\left(t_{2}+t_{3}\\right)\\,\\sin\\left(t_{4}\\right)}{1000}-\\frac{37\\,\\cos\\left(t_{2}\\right)}{200}-\\frac{17\\,\\cos\\left(t_{2}+t_{3}\\right)}{100}+\\cos\\left(t_{5}\\right)\\,\\left(\\frac{171\\,\\cos\\left(t_{2}+t_{3}\\right)\\,\\sin\\left(t_{4}\\right)}{2000}+\\frac{171\\,\\sin\\left(t_{2}+t_{3}\\right)\\,\\cos\\left(t_{4}\\right)}{2000}\\right)-\\frac{77\\,\\cos\\left(t_{2}+t_{3}\\right)\\,\\cos\\left(t_{4}\\right)}{1000}\\\\ \\cos\\left(t_{5}\\right)\\,\\cos\\left(t_{6}\\right) & -\\cos\\left(t_{5}\\right)\\,\\sin\\left(t_{6}\\right) & \\sin\\left(t_{5}\\right) & \\frac{171\\,\\sin\\left(t_{5}\\right)}{2000}+\\frac{23}{1000}\\\\ 0 & 0 & 0 & 1 \\end{array}\\right) \\]

    \u800c\u8fd9\u4e2a\u7ed3\u679c\u7b49\u4e8e\uff1a

    \\[ (T_1^0)^{-1}T = T_6^1 \\]

    \u56e0\u4e3aT\u662f\u5df2\u77e5\u7684\uff0c\u6211\u4eec\u53ef\u4ee5\u8ba1\u7b97\u51fa\u7b49\u5f0f\u7684\u5de6\u8fb9\uff1a

    \\[ (T_1^0)^{-1}T = \\left(\\begin{array}{cccc} \\mathrm{nx}\\,\\cos\\left(t_{1}\\right)+\\mathrm{ny}\\,\\sin\\left(t_{1}\\right) & \\mathrm{ox}\\,\\cos\\left(t_{1}\\right)+\\mathrm{oy}\\,\\sin\\left(t_{1}\\right) & \\mathrm{ax}\\,\\cos\\left(t_{1}\\right)+\\mathrm{ay}\\,\\sin\\left(t_{1}\\right) & \\mathrm{dx}\\,\\cos\\left(t_{1}\\right)+\\mathrm{dy}\\,\\sin\\left(t_{1}\\right)\\\\ -\\mathrm{nz} & -\\mathrm{oz} & -\\mathrm{az} & \\frac{23}{100}-\\mathrm{dz}\\\\ \\mathrm{ny}\\,\\cos\\left(t_{1}\\right)-\\mathrm{nx}\\,\\sin\\left(t_{1}\\right) & \\mathrm{oy}\\,\\cos\\left(t_{1}\\right)-\\mathrm{ox}\\,\\sin\\left(t_{1}\\right) & \\mathrm{ay}\\,\\cos\\left(t_{1}\\right)-\\mathrm{ax}\\,\\sin\\left(t_{1}\\right) & \\mathrm{dy}\\,\\cos\\left(t_{1}\\right)-\\mathrm{dx}\\,\\sin\\left(t_{1}\\right)\\\\ 0 & 0 & 0 & 1 \\end{array}\\right) \\]

    \u5bf9\u6bd4\u8fd9\u4e24\u4e2a\u77e9\u9635\u7684\u4e0d\u540c\u5f62\u5f0f\uff0c\u6ce8\u610f\u5230\u8fd9\u4e24\u4e2a\u77e9\u9635\u7b2c\u4e09\u884c\u7684\u540e\u9762\u4e24\u9879\uff0c\u5373

    \\[ \\left\\{ \\begin{align*} \\mathrm{ay}\\,\\cos\\left(t_{1}\\right)-\\mathrm{ax}\\,\\sin\\left(t_{1}\\right) &= \\sin\\left(t_{5}\\right)\\\\ \\mathrm{dy}\\,\\cos\\left(t_{1}\\right)-\\mathrm{dx}\\,\\sin\\left(t_{1}\\right) &= \\frac{171\\,\\sin\\left(t_{5}\\right)}{2000}+\\frac{23}{1000} \\end{align*} \\right. \\]

    \u6839\u636e\u8fd9\u4e2a\u65b9\u7a0b\u7ec4\uff0c\u6d88\u53bb\\(\\sin\\left(t_{5}\\right)\\)\uff0c\u53ef\u4ee5\u5f97\u5230\u5173\u4e8e\\(a_1\\)\u7684\u65b9\u7a0b\uff1a

    \\[ \\left(\\mathrm{dy} - 0.0855 \\mathrm{ay}\\right)\\cos\\left(t_{1}\\right) + \\left(0.0855 \\mathrm{ax} - \\mathrm{dx}\\right)\\sin\\left(a_{1}\\right) = 0.023 \\]

    \u4ece\u8fd9\u4e2a\u65b9\u7a0b\u53ef\u4ee5\u5f97\u5230

    \\[ t_1 = \\arctan2\\left(d_y, d_x\\right) - \\arctan2\\left(d_2, \\pm \\sqrt{d_x^2+d_y^2-d_2^2} \\right) \\]

    \u5176\u4e2d

    \\[ \\left\\{ \\begin{align*} d_x &= \\mathrm{dx} - 0.0855 \\mathrm{ax}\\\\ d_y &= \\mathrm{dy} - 0.0855 \\mathrm{ay}\\\\ d_2 &= 0.023 \\end{align*} \\right. \\]

    \u8fd9\u6837\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5f97\u5230\\(t_1\\)\u7684\u503c\u3002\u7136\u540e\uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u5230\\(t_5\\)\u7684\u503c\uff1a

    \\[ t_5 = \\arcsin\\left(\\mathrm{ay}\\,\\cos\\left(t_{1}\\right)-\\mathrm{ax}\\,\\sin\\left(t_{1}\\right) \\right) \uff08\\mathrm{ay}\\,\\cos\\left(t_{1}\\right)-\\mathrm{ax}\\,\\sin\\left(t_{1}\\right) \\leq 1) \\]

    \u5f97\u5230\u4e86\\(t_1\\)\u548c\\(t_5\\)\u7684\u503c\u4e4b\u540e\uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u5230\\(t_6\\)\u7684\u503c\uff0c\\(t_6\\)\u6ee1\u8db3\uff1a

    \\[ \\left\\{ \\begin{align*} \\cos\\left(t_{5}\\right)\\,\\cos\\left(t_{6}\\right) &= \\mathrm{ny}\\,\\cos\\left(t_{1}\\right)-\\mathrm{nx}\\,\\sin\\left(t_{1}\\right)\\\\ -\\cos\\left(t_{5}\\right)\\,\\sin\\left(t_{6}\\right) &= \\mathrm{oy}\\,\\cos\\left(t_{1}\\right)-\\mathrm{ox}\\,\\sin\\left(t_{1}\\right) \\end{align*} \\right. \\]

    \u6240\u4ee5\uff0c

    \\[ t_6 = \\arctan2\\left(\\mathrm{ox}\\,\\sin\\left(t_{1}\\right)-\\mathrm{oy}\\,\\cos\\left(t_{1}\\right), \\mathrm{ny}\\,\\cos\\left(t_{1}\\right)-\\mathrm{nx}\\,\\sin\\left(t_{1}\\right)\\right) \\]

    \u63a5\u4e0b\u6765\uff0c\u8ba9\u6211\u4eec\u4e00\u9f13\u4f5c\u6c14\uff0c\u6c42\u51fa\u5269\u4e0b\u7684\u503c\u3002\u56e0\u4e3a\\(t_1\\)\uff0c\\(t_5\\)\uff0c\\(t_6\\)\u5df2\u7ecf\u6c42\u51fa\uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u5230\uff1a

    \\[ T_4^1 = T_2^1T_3^2T_4^3 \\]

    \u5e26\u5165\u53d8\u6362\u77e9\u9635\uff0c\u53ef\u4ee5\u5f97\u5230\uff1a

    \\[ T_4^1 = \\left(\\begin{array}{cccc} \\cos\\left(t_{2}+t_{3}+t_{4}\\right) & 0 & \\sin\\left(t_{2}+t_{3}+t_{4}\\right) & \\frac{17\\,\\sin\\left(t_{2}+t_{3}\\right)}{100}+\\frac{37\\,\\sin\\left(t_{2}\\right)}{200}\\\\ \\sin\\left(t_{2}+t_{3}+t_{4}\\right) & 0 & -\\cos\\left(t_{2}+t_{3}+t_{4}\\right) & -\\frac{17\\,\\cos\\left(t_{2}+t_{3}\\right)}{100}-\\frac{37\\,\\cos\\left(t_{2}\\right)}{200}\\\\ 0 & 1 & 0 & \\frac{23}{1000}\\\\ 0 & 0 & 0 & 1 \\end{array}\\right) \\]

    \u800c\u548c\u4e0a\u9762\u7c7b\u4f3c\uff0c\u8fd9\u4e2a\u5f0f\u5b50\u8fd8\u7b49\u4e8e\uff1a

    \\[ (T_1^0)^{-1}T(T_6^5)^{-1}(T_5^4)^{-1} = T_4^1 \\]

    \u8fd9\u4e2a\\(T_4^1\\)\u4e2d\u7684\u6bcf\u4e00\u4e2a\u503c\u6211\u4eec\u90fd\u662f\u5df2\u77e5\u7684\uff0c\u5341\u5206\u590d\u6742\uff0c\u8fd9\u91cc\u4e0d\u5217\u51fa\u5b83\u7684\u5177\u4f53\u5f62\u5f0f\uff0c\u6240\u4ee5\u53ea\u77e5\u9053\u8fd9\u4e2a\u503c\u80fd\u7b97\u5c31\u884c\u4e86\u3002

    \u8fd9\u4e2a\u4e1c\u897f\u80fd\u7b97\uff0c\u6211\u4eec\u89c2\u5bdf\u7b2c\u4e00\u4e2a\\(T_4^1\\)\u516c\u5f0f\u7684\u7b2c\u4e00\u884c\u7684\u7b2c\u56db\u5217\u548c\u7b2c\u4e8c\u884c\u7684\u7b2c\u56db\u5217\uff0c\u611f\u89c9\u597d\u50cf\u80fd\u89e3\u3002

    \u6240\u4ee5\u5c31\u4ee3\u5165\u8fc7\u6765\uff1a

    \\[ \\left\\{ \\begin{align*} \\frac{17\\,\\sin\\left(t_{2}+t_{3}\\right)}{100}+\\frac{37\\,\\sin\\left(t_{2}\\right)}{200} &= \\mathrm{dx}\\,\\cos\\left(t_{1}\\right)-\\frac{171\\,\\mathrm{ax}\\,\\cos\\left(t_{1}\\right)}{2000}-\\frac{171\\,\\mathrm{ay}\\,\\sin\\left(t_{1}\\right)}{2000}+\\mathrm{dy}\\,\\sin\\left(t_{1}\\right)-\\frac{77\\,\\mathrm{ox}\\,\\cos\\left(t_{1}\\right)\\,\\cos\\left(t_{6}\\right)}{1000}-\\frac{77\\,\\mathrm{nx}\\,\\cos\\left(t_{1}\\right)\\,\\sin\\left(t_{6}\\right)}{1000}-\\frac{77\\,\\mathrm{oy}\\,\\cos\\left(t_{6}\\right)\\,\\sin\\left(t_{1}\\right)}{1000}-\\frac{77\\,\\mathrm{ny}\\,\\sin\\left(t_{1}\\right)\\,\\sin\\left(t_{6}\\right)}{1000}\\\\ -\\frac{17\\,\\cos\\left(t_{2}+t_{3}\\right)}{100}-\\frac{37\\,\\cos\\left(t_{2}\\right)}{200} &= \\frac{171\\,\\mathrm{az}}{2000}-\\mathrm{dz}+\\frac{77\\,\\mathrm{oz}\\,\\cos\\left(t_{6}\\right)}{1000}+\\frac{77\\,\\mathrm{nz}\\,\\sin\\left(t_{6}\\right)}{1000}+\\frac{23}{100} \\end{align*} \\right. \\]

    \u8fd9\u4e2a\u5f0f\u5b50\u53f3\u8fb9\u7684\u9879\u6765\u81ea\u90a3\u4e2a\u975e\u5e38\u975e\u5e38\u590d\u6742\u7684\u5f0f\u5b50\uff0c\u4f46\u597d\u5728\u901a\u8fc7\u524d\u9762\u7684\u5206\u6790\u6211\u4eec\u662f\u77e5\u9053\u5b83\u7684\u503c\u7684\u3002

    \u6ce8\u610f\u5230\uff0c\u5f0f\u5b50\u5de6\u8fb9\u5e73\u65b9\u76f8\u52a0\u4e4b\u540e\u7684\u7ed3\u679c\u662f\uff1a

    \\[ {C_{1}}^2+2\\,\\cos\\left(t_{3}\\right)\\,C_{1}\\,C_{2}+{C_{2}}^2 \\]

    \u6240\u4ee5\u6211\u4eec\u5728\u8fd9\u91cc\u5c31\u80fd\u6c42\u51fa\\(t_3\\)\u7684\u503c\uff0c\u5373

    \\[ t_3 = \\pm \\arccos\\left(\\frac{A_1^2 + A_2^2 - C_1^2 - C_2^2}{2\\,C_{1}\\,C_{2}}\\right) \\]

    \u5176\u4e2d

    \\[ \\left\\{ \\begin{align*} A_1 &= \\mathrm{dx}\\,\\cos\\left(t_{1}\\right)-\\frac{171\\,\\mathrm{ax}\\,\\cos\\left(t_{1}\\right)}{2000}-\\frac{171\\,\\mathrm{ay}\\,\\sin\\left(t_{1}\\right)}{2000}+\\mathrm{dy}\\,\\sin\\left(t_{1}\\right)-\\frac{77\\,\\mathrm{ox}\\,\\cos\\left(t_{1}\\right)\\,\\cos\\left(t_{6}\\right)}{1000}-\\frac{77\\,\\mathrm{nx}\\,\\cos\\left(t_{1}\\right)\\,\\sin\\left(t_{6}\\right)}{1000}-\\frac{77\\,\\mathrm{oy}\\,\\cos\\left(t_{6}\\right)\\,\\sin\\left(t_{1}\\right)}{1000}-\\frac{77\\,\\mathrm{ny}\\,\\sin\\left(t_{1}\\right)\\,\\sin\\left(t_{6}\\right)}{1000}\\\\ A_2 &= -\\frac{171\\,\\mathrm{az}}{2000}+\\mathrm{dz}-\\frac{77\\,\\mathrm{oz}\\,\\cos\\left(t_{6}\\right)}{1000}-\\frac{77\\,\\mathrm{nz}\\,\\sin\\left(t_{6}\\right)}{1000}-\\frac{23}{100} \\end{align*} \\right. \\]

    \u8fd9\u6837\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5f97\u5230\\(t_3\\)\u7684\u503c\u3002\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u5230\\(t_2\\)\u7684\u503c\uff0c\u8fd9\u4e2a\u503c\u4ece\u4e0a\u9762\u90a3\u4e2a\u77e9\u9635\u7684\u7b2c\u4e00\u884c\u7684\u7b2c\u4e09\u5217\u5c31\u80fd\u7684\u51fa\u6765.\u3002

    \\[ \\left(C_1 \\cos(t_3) + C_2 \\right) \\sin(t_2) + C_1 \\sin(t_3) \\cos(t_2) = A_1 \\]

    \u89e3\u5f97

    \\[ t_2 = \\arctan2\\left(d_y, d_x\\right) - \\arctan2\\left(d_2, \\pm \\sqrt{d_x^2+d_y^2-d_2^2} \\right) \\]

    \u5176\u4e2d

    \\[ \\left\\{ \\begin{align*} d_x &= -\\left(C_1 \\cos(t_3) + C_2 \\right)\\\\ d_y &= C_1 \\sin(t_3)\\\\ d_2 &= A_1\\\\ C_1&=0.170, C_2=0.185 \\end{align*} \\right. \\]

    \u8fd9\u6837\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5f97\u5230\\(t_2\\)\u7684\u503c\u3002\u6700\u540e\uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u5230\\(t_4\\)\u7684\u503c\uff0c\u8fd9\u4e2a\u503c\u4ece\u4e0a\u9762\u90a3\u4e2a\\(T_4^1\\)\u7684\u7b2c\u4e00\u884c\u7b2c\u4e00\u5217\u548c\u7b2c\u4e8c\u884c\u7b2c\u4e8c\u5217\u7684\u6bd4\u503c\u5c31\u80fd\u6c42\u51fa\u6765\uff0c\u663e\u800c\u6613\u89c1\uff1a

    \\[ \\left\\{ \\begin{align*} \\cos\\left(t_2+t_3+t_4\\right) &= \\mathrm{ax}\\,\\cos\\left(t_{1}\\right)\\,\\cos\\left(t_{5}\\right)+\\mathrm{ay}\\,\\cos\\left(t_{5}\\right)\\,\\sin\\left(t_{1}\\right)-\\mathrm{nx}\\,\\cos\\left(t_{1}\\right)\\,\\cos\\left(t_{6}\\right)\\,\\sin\\left(t_{5}\\right)-\\mathrm{ny}\\,\\cos\\left(t_{6}\\right)\\,\\sin\\left(t_{1}\\right)\\,\\sin\\left(t_{5}\\right)+\\mathrm{ox}\\,\\cos\\left(t_{1}\\right)\\,\\sin\\left(t_{5}\\right)\\,\\sin\\left(t_{6}\\right)+\\mathrm{oy}\\,\\sin\\left(t_{1}\\right)\\,\\sin\\left(t_{5}\\right)\\,\\sin\\left(t_{6}\\right)\\\\ \\sin\\left(t_2+t_3+t_4\\right) &= \\mathrm{nz}\\,\\cos\\left(t_{6}\\right)\\,\\sin\\left(t_{5}\\right)-\\mathrm{az}\\,\\cos\\left(t_{5}\\right)-\\mathrm{oz}\\,\\sin\\left(t_{5}\\right)\\,\\sin\\left(t_{6}\\right) \\end{align*} \\right. \\] \\[ t_4 = \\arctan2\\left(\\sin\\left(t_2+t_3+t_4\\right), \\cos\\left(t_2+t_3+t_4\\right)\\right) - t_2 - t_3 \\]

    \u81f3\u6b64\uff0c\u6211\u4eec\u5df2\u7ecf\u6c42\u51fa\u4e86\u9006\u8fd0\u52a8\u5b66\u7684\u89e3\u6790\u89e3\u3002

    "},{"location":"Notes/%E6%9C%BA%E5%99%A8%E4%BA%BA%E6%8A%80%E6%9C%AF%E4%B8%8E%E5%AE%9E%E8%B7%B5/lab4/#\u6e90\u4ee3\u7801","title":"\u6e90\u4ee3\u7801","text":"
    import numpy as np\nfrom math import cos, sin, atan2, sqrt, asin, acos, pi\n\nclass solution:\n    def __init__(self, theta):\n        locations = theta[:3]\n        thetas = theta[3:]\n        t1, t2, t3 = thetas[0], thetas[1], thetas[2]\n\n\n        self.T = np.zeros((4,4))\n\n        self.T[0, 3] = locations[0]\n        self.T[1, 3] = locations[1]\n        self.T[2, 3] = locations[2]\n\n        self.T[0, 0] = cos(t2) * cos(t3)\n        self.T[0, 1] = -cos(t2) * sin(t3)\n        self.T[0, 2] = sin(t2)\n\n        self.T[1, 0] = sin(t1) * sin(t2) * cos(t3) + cos(t1) * sin(t3)\n        self.T[1, 1] = -sin(t1) * sin(t2) * sin(t3) + cos(t1) * cos(t3)\n        self.T[1, 2] = -sin(t1) * cos(t2)\n\n        self.T[2, 0] = -cos(t1) * sin(t2) * cos(t3) + sin(t1) * sin(t3)\n        self.T[2, 1] = cos(t1) * sin(t2) * sin(t3) + sin(t1) * cos(t3)\n        self.T[2, 2] = cos(t1) * cos(t2)\n\n        self.nx, self.ny, self.nz = self.T[0, 0], self.T[1, 0], self.T[2, 0]\n        self.ox, self.oy, self.oz = self.T[0, 1], self.T[1, 1], self.T[2, 1]\n        self.ax, self.ay, self.az = self.T[0, 2], self.T[1, 2], self.T[2, 2]\n        self.dx, self.dy, self.dz = self.T[0, 3], self.T[1, 3], self.T[2, 3]\n\n    def IK(self):\n        t1 = self._cal_t1()\n        t5 = self._cal_t5(t1=t1)\n        t6 = self._cal_t6(t1=t1)\n        t3 = self._cal_t3(t1=t1, t6=t6)\n        t2 = self._cal_t2(t1=t1, t3=t3, t6=t6)\n        t4 = self._cal_t4(t1=t1, t2=t2, t3=t3, t5=t5, t6=t6)\n        return [t1, t2, t3, t4 , t5, t6]\n\n    def _cal_t1(self):\n        dx = self.dx - 0.0855 * self.ax\n        dy = self.dy - 0.0855 * self.ay\n        d2 = 0.023\n        dt = sqrt(dx * dx + dy * dy - d2 * d2)\n        t = np.zeros(2)\n        t[0] = atan2(dy, dx) - atan2(d2, dt)\n        t[1] = atan2(dy, dx) - atan2(d2, -dt)\n        return t[0]\n\n    def _cal_t5(self, t1):\n\n        ay = self.ay\n        ax = self.ax\n\n        return asin(ay * cos(t1) - ax * sin(t1))\n\n    def _cal_t6(self, t1):\n        ox = self.ox\n        oy = self.oy\n        nx = self.nx\n        ny = self.ny\n        return atan2(ox * sin(t1) - oy * cos(t1), ny * cos(t1) - nx * sin(t1))\n\n    def _cal_t3(self, t1, t6):\n\n        dx = self.dx\n        dy = self.dy\n        ax = self.ax\n        ay = self.ay\n        ox = self.ox\n        nx = self.nx\n        oy = self.oy\n        ny = self.ny\n\n        az = self.az\n        dz = self.dz\n        oz = self.oz\n        nz = self.nz\n\n        C1 = 17/100\n        C2 = 37/200\n\n        A1 = (dx * cos(t1) - 0.0855 * ax * cos(t1) - 0.0855 * ay * sin(t1)\n              + dy * sin(t1) \n              - 0.077 * ox * cos(t1) * cos(t6)\n              - 0.077 * nx * cos(t1) * sin(t6) \n              - 0.077 * oy * sin(t1) * cos(t6)\n              - 0.077 * ny * sin(t1) * sin(t6)\n              )\n\n        A2 = (-171 * az /2000 + dz - 77 * oz * cos(t6) / 1000 \n              - 77 * nz * sin(t6) / 1000 - 0.23)\n\n        t3 = -acos((A1 * A1 + A2 * A2 - C1 * C1 - C2 * C2) / (2 * C1 * C2))\n        return t3\n\n    def _cal_t2(self, t1, t3, t6):\n\n        dx = self.dx\n        dy = self.dy\n        ax = self.ax\n        ay = self.ay\n        ox = self.ox\n        nx = self.nx\n        oy = self.oy\n        ny = self.ny\n        A1 = (dx * cos(t1) - 171 * ax * cos(t1) / 2000 - 171 * ay * sin(t1) /2000\n              + dy * sin(t1) \n              - 77 * ox * cos(t1) * cos(t6) / 1000\n              - 77 * nx * cos(t1) * sin(t6) / 1000\n              - 77 * oy * sin(t1) * cos(t6) / 1000\n              - 77 * ny * sin(t1) * sin(t6) / 1000\n              )\n        C1 = 17/100\n        C2 = 37/200\n\n        dx = -(C1 * cos(t3) + C2)\n        dy = C1 * sin(t3)\n        d2 = A1\n\n        dt = sqrt(dx * dx + dy * dy - d2 * d2)\n        t = np.zeros(2)\n        t[0] = atan2(dy, dx) - atan2(d2, dt)\n        t[1] = atan2(dy, dx) - atan2(d2, -dt)\n\n        return t[0]\n\n    def _cal_t4(self, t1, t5, t2, t3, t6):\n        ax = self.ax\n        ay = self.ay\n        az = self.az\n        nx = self.nx\n        ny = self.ny\n        ox = self.ox\n        oy = self.oy\n        nz = self.nz\n        oz = self.oz\n        c234 = (ax * cos(t1) * cos(t5) + \n                ay * cos(t5) * sin(t1) -\n                nx * cos(t1) * sin(t5) * cos(t6) -\n                ny * cos(t6) * sin(t1) * sin(t5) +\n                ox * cos(t1) * sin(t5) * sin(t6) +\n                oy * sin(t1) * sin(t5) * sin(t6))\n        s234 = (nz * cos(t6) * sin(t5) - az * cos(t5) -\n                oz * sin(t5) * sin(t6))\n        t4 = atan2(s234, c234) - t2 - t3\n        return t4\n\nif __name__ == '__main__':\n\n    end_effector_pose = [[0.117, 0.334, 0.499, -2.019, -0.058, -2.190],\n                         [-0.066, 0.339, 0.444, -2.618, -0.524, -3.141],\n                         [0.3, 0.25, 0.26, -2.64, 0.59, -2.35],\n                         [0.42, 0, 0.36, 3.14, 1, -1.57],\n                         [0.32, -0.25, 0.16, 3, 0.265, -0.84]]\n\n    Solver = solution(end_effector_pose[4])\n\n    result = Solver.IK()\n\n    print(result)\n
    "},{"location":"Notes/%E6%9C%BA%E5%99%A8%E4%BA%BA%E6%8A%80%E6%9C%AF%E4%B8%8E%E5%AE%9E%E8%B7%B5/lab4/#\u9a8c\u8bc1\u7ed3\u679c","title":"\u9a8c\u8bc1\u7ed3\u679c","text":"

    \u8981\u6c42\u4ee3\u5165\u5982\u4e0b\u51e0\u7ec4\u7684\u6570\u636e\u5b9e\u9a8c\u5e76\u8bb0\u5f55\u7ed3\u679c\uff1a

    \u5e8f\u53f7 \\(x\\) \\(y\\) \\(z\\) \\(\\phi\\) \\(\\theta\\) \\(\\psi\\) 1 0.117 0.334 0.499 -2.019 -0.058 -2.190 2 -0.066 0.339 0.444 -2.618 -0.524 -3.141 3 0.3 0.25 0.26 -2.64 0.59 -2.35 4 0.42 0 0.36 3.14 1 -1.57 5 0.32 -0.25 0.16 3 0.265 -0.84

    \u4ee3\u5165\u6211\u4eec\u7684\u7a0b\u5e8f\uff0c\u5f97\u5230\u7ed3\u679c\u5982\u4e0b\uff1a

    \u5e8f\u53f7 \\(\\theta_1\\) \\(\\theta_2\\) \\(\\theta_3\\) \\(\\theta_4\\) \\(\\theta_5\\) \\(\\theta_6\\) 1 1.0469159881245618 -3.6848268488640077 -0.5314544325246965 4.739457934996882 0.523908606235766 0.6985405717445783 2 1.5715257919759826 -3.602109744046789 -0.6608338908729985 5.309782428345745 0.5236351560106807 0.0013221366719161028 3 0.638109037379833 -3.9315902306928483 -1.3432621283836084 6.091162835543736 -0.010496018243560683 0.010128409252622487 4 -0.06591845703403737 -3.9689490669809517 -0.8245292249247629 5.365232265305782 0.054596781589503346 -0.0361945809572239 5 -0.7356518980607447 -4.176588341280122 -1.0532070322734461 6.510149968753879 0.07485626641182383 -0.01280542967480542

    \u5c06\u4ee5\u4e0a\u7684\u70b9\u4ee3\u5165\u4eff\u771f\u7a0b\u5e8f\uff0c\u53ef\u4ee5\u5f97\u5230\u4e0e\u672b\u7aef\u4f4d\u59ff\u76f8\u540c\u7684\u7ed3\u679c:

    \u4eff\u771f\u7ed3\u679c1\uff1a

    [0.11699999999999991, 0.33399999999999985, 0.020422614535513077, -2.019, -0.05800000000000007, -2.19]

    \u4eff\u771f\u7ed3\u679c2\uff1a

    [-0.06600000000000003, 0.33899999999999997, -0.03517289232717361, -2.6180000000000003, -0.5239999999999999, -3.141]

    \u4eff\u771f\u7ed3\u679c3\uff1a

    [0.3, 0.25000000000000006, 0.18088897246534913, -2.640000000000001, 0.589999999999999, -2.349999999999999]

    \u4eff\u771f\u7ed3\u679c4\uff1a

    [0.42000000000000004, 1.680513367352532e-17, 0.1371152126509033, 3.14, 1.0000000000000004, -1.5]

    \u4eff\u771f\u7ed3\u679c5\uff1a

    [0.31999999999999995, -0.25, 0.1599999999999998, 3.0, 0.265, -0.8399999999999997]

    \u8bf4\u660e\u6211\u4eec\u7684\u7a0b\u5e8f\u662f\u6b63\u786e\u7684\u3002

    "},{"location":"Tech/CTC/","title":"Connectionist Temporal Classification (CTC)","text":""},{"location":"Tech/CTC/#sqe2seq-model","title":"Sqe2Seq model","text":"

    Case 1: With Alignment

    The input and output sequences happen in the same order. Although they may be aynchronous.

    As is shown in the figure, the sequence of inputs produces a single output.

    "},{"location":"Tech/CTC/#how-do-we-train-a-ctc-model","title":"How do we train a CTC model","text":"

    It brings a problem, if we have a sequence which has a lot of noise, and we may have make a clear output corresponds to the noise. Which is not what we want.

    \u6211\u60f3\u5728\u8fd9\u4e2a\u5730\u65b9\u80fd\u4e0d\u80fd\u91c7\u53d6\u4e00\u79cd\u7b56\u7565\uff0c\u5c31\u662f\u5bf9\u97f3\u9891\u8fdb\u884c\u968f\u673a\u7684\u5207\u7247\uff0c\u7136\u540e\u62b9\u9664\u6389\u4e00\u5207\u5207\u7247\u7684\u4fe1\u606f\uff0c\u7136\u540e\u6bd4\u5bf9\u62b9\u9664\u524d\u540e\u7684\u8f93\u51fa\uff0c\u5f53\u8fd9\u4e2a\u62b9\u9664\u540e\u7684\u7ed3\u679c\u548c\u62b9\u9664\u524d\u7684\u7ed3\u679c\u5dee\u522b\u6bd4\u8f83\u5927\u7684\u8bdd\uff0c\u5c31\u8bc1\u660e\u8fd9\u4e2a\u90e8\u5206\u662f\u91cd\u8981\u7684\uff0c\u53cd\u4e4b\uff0c\u5219\u8fd9\u4e2a\u90e8\u5206\u6ca1\u4ec0\u4e48\u610f\u4e49\uff0c\u5c31\u5f53\u4f5c\u566a\u58f0\u5904\u7406\u3002

    \u6240\u4ee5\u6211\u4eec\u7684\u6a21\u578b\u53ef\u4ee5\u5f97\u5230\u8f93\u51fa\u540e\u7684\u7ed3\u679c\uff0c\u4ee5\u53ca\u566a\u58f0\u7684\u533a\u95f4\uff0c\u540c\u65f6\u8fd8\u6709\u4e00\u4e2a\u566a\u58f0\u7684\u6743\u91cd\uff0c\u8fd9\u6837\u6211\u4eec\u5c31\u53ef\u4ee5\u5f97\u5230\u4e00\u4e2a\u66f4\u52a0\u51c6\u786e\u7684\u8f93\u51fa\u3002

    "},{"location":"Tech/conda%26pip/","title":"Conda\u548cpip\u7a76\u7adf\u6709\u4ec0\u4e48\u533a\u522b\u548c\u8054\u7cfb","text":"

    \u7701\u6d41\u7248

    \u63a8\u8350\u53ea\u7528conda\u521b\u5efa\u865a\u62df\u73af\u5883\uff0c\u800c\u4f7f\u7528pip\u5b89\u88c5\u9700\u8981\u7684\u5305\u3002

    "},{"location":"Tech/conda%26pip/#\u4ec0\u4e48\u662f\u865a\u62df\u73af\u5883","title":"\u4ec0\u4e48\u662f\u865a\u62df\u73af\u5883","text":"

    \u6839\u636epython\u7684\u5b98\u65b9\u6587\u4ef6\uff1a

    \u201c\u865a\u62df\u73af\u5883\u662f\u4e00\u4e2a Python \u73af\u5883\uff0c\u8fd9\u6837\u5b89\u88c5\u5728\u5176\u4e2d\u7684 Python \u89e3\u91ca\u5668\u3001\u5e93\u548c\u811a\u672c\u5c31\u4e0e\u5b89\u88c5\u5728\u5176\u5b83\u865a\u62df\u73af\u5883\u4e2d\u7684\u3001\u4ee5\u53ca\uff08\u9ed8\u8ba4\uff09\u5b89\u88c5\u5728\u201c\u7cfb\u7edf\u201d Python\uff08\u4e5f\u5c31\u662f\u4f5c\u4e3a\u64cd\u4f5c\u7cfb\u7edf\u7684\u4e00\u90e8\u5206\u5b89\u88c5\u7684\u5e93\uff09\u4e2d\u7684\u4efb\u4f55\u5e93\u9694\u79bb\u3002

    \u865a\u62df\u73af\u5883\u7684\u539f\u7406\uff1a

    "},{"location":"Tech/conda%26pip/#conda-install-\u548c-pip-install-\u7684\u533a\u522b","title":"conda install \u548c pip install \u7684\u533a\u522b","text":"

    \u5b89\u88c5\u7684\u76ee\u5f55\u4e0d\u4e00\u6837\uff0c\u7b80\u800c\u8a00\u4e4b\uff0c\u5c31\u662fconda install\u7684\u5305\u662f\u5b89\u88c5\u5728\u4e00\u4e2a\u7edf\u4e00\u7684\u76ee\u5f55\u4e0b\u9762\u7684\uff0c\u5bf9\u6240\u6709\u7684\u73af\u5883\u90fd\u53ef\u89c1\u3002\u4f46\u662fpip install\u53ea\u4f1a\u5b89\u88c5\u5728\u5f53\u524d\u7684\u865a\u62df\u73af\u5883\u76ee\u5f55\uff0c\u6240\u4ee5pip install\u66f4\u52a0\u8d34\u5408\u6211\u4eec\u5bf9\u865a\u62df\u73af\u5883\u672c\u8eab\u7684\u9700\u6c42\u3002

    "},{"location":"Tech/%E5%9C%A8%E6%82%A8%E7%9A%84%E4%B8%AA%E4%BA%BA%E5%8D%9A%E5%AE%A2%E4%B8%AD%E6%B7%BB%E5%8A%A0pdf%E6%96%87%E4%BB%B6/","title":"\u5982\u4f55\u5728mkdocs\u535a\u5ba2\u4e2d\u63d2\u5165pdf\u6587\u4ef6","text":"

    \u770b\u4e86\u5f88\u591a\u65b9\u6cd5\uff0c\u73b0\u5728\u5c06\u4e2a\u4eba\u89c9\u5f97\u6700\u7b80\u5355\u7684\u4e00\u79cd\u653e\u5728\u4e4b\u7c7b\u3002

    \u9996\u5148\u5b89\u88c5extension\uff1a

    pip install pymdown-extensions\n

    \u968f\u540e\u4fee\u6539\u60a8\u7684mkdocs.yml\u6587\u4ef6\uff0c\u60a8\u9700\u8981\u5728\u60a8\u7684markdown_extensions\u90e8\u5206\u52a0\u4e0a\u8fd9\u4e2a\u63d2\u4ef6\u5e76\u5305\u542b\u5b83\u7684\u914d\u7f6e\uff1a

    markdown_extensions:\n  - abbr\n  # ...some extensions\n  - pymdownx.pathconverter:\n      base_path: '' # default: ''\n      relative_path: '' # default ''\n      absolute: false # default: false\n      tags: 'a script img link object embed'\n

    \u8fd9\u56db\u4e2a\u914d\u7f6e\u5176\u5b9e\u8fd8\u662f\u5f88\u76f4\u89c2\u7684\uff0c\u63a5\u4e0b\u6765\u8bf4\u600e\u4e48\u5728\u60a8\u7684\u6587\u6863\u4e2d\u52a0\u5165pdf\u63d2\u4ef6\u5e76\u5b9e\u73b0\u7f51\u9875\u7aef\u7684\u5728\u7ebf\u9884\u89c8\uff0c\u6548\u679c\u5982\u56fe\u6240\u793a\uff1a

    \u4e3a\u4e86\u5b9e\u73b0\u8fd9\u4e2a\u5176\u5b9e\u662f\u5f88\u7b80\u5355\u7684\uff0c\u60a8\u53ea\u9700\u8981\u5728\u60a8\u7684markdown\u4e2d\u52a0\u4e0a\uff1a

    <iframe src=\"Path2YourFile\" width=\"100%\" height=\"600px\" style=\"border: none;\">\nThis browser does not support PDFs\n</iframe>\n

    \u6839\u636e\u914d\u7f6e\uff0c\u8fd9\u91cc\u7684src\u91c7\u7528\u76f8\u5bf9\u8def\u5f84\uff0c\u6839\u76ee\u5f55\u662f\u5f53\u524d\u7f16\u8f91\u7684markdown\u6587\u4ef6\u6240\u5728\u76ee\u5f55\u3002

    \u5047\u5982\u6211\u7684markdown\u6587\u4ef6\u5728docs/markdown/test.md\uff0c\u800c\u6211\u60f3\u8981\u63d2\u7684\u6587\u4ef6\u5728docs/files/insert.pdf\uff0c\u5c31\u5728src\u5199../files/insert.pdf\u3002

    \u5982\u679c\u80fd\u5e2e\u5230\u60a8\u7684\u8bdd\u6211\u5f88\u5f00\u5fc3\uff0c\u6709\u4ec0\u4e48\u95ee\u9898\u6b22\u8fce\u5728issue\u4e2d\u63d0\u51fa\u6216\u8005\u7ed9\u6211\u53d1\u90ae\u4ef6~~

    "}]} \ No newline at end of file +{"config":{"lang":["en"],"separator":"[\\s\\-]+","pipeline":["stopWordFilter"]},"docs":[{"location":"","title":"WELCOME","text":"

    Welcome

    Welcome to my blog! This blog is still under construction, so there may be some bugs. If you find any bugs, please let me know. Thank you!

    Hello, I'm Chenxu, a college student from China. I'm interested in programming, open source, and technology. I'm currently study electrical engineering at Zhejiang University.

    I'm a big fan of Python, and I'm also familiar with C/C++ and JavaScript. I'm also interested in web development. Recently, I'm learning about machine learning and deep learning, mainly related to dysfluency speech.

    Maybe you are interested in my projects, you can find them on GitHub.

    Here, I will share my thoughts, projects, and some interesting things. I hope you can enjoy it.

    Recently working on "},{"location":"Electrical%20Engineering/PCB%20Design/lecture1/","title":"PCB\u8bbe\u8ba1\u57fa\u7840","text":""},{"location":"Electrical%20Engineering/PCB%20Design/lecture1/#pcb\u7ed3\u6784\u4e0e\u7ec4\u6210","title":"PCB\u7ed3\u6784\u4e0e\u7ec4\u6210","text":"

    PCB\u677f\u5c31\u662f\u5370\u5236\u7535\u8def\u677f\uff0c\u53c8\u79f0\u5370\u5237\u7535\u8def\u677f\uff0c\u662f\u7535\u5b50\u5143\u5668\u4ef6\u4e0e\u7535\u6c14\u8fde\u63a5\u7684\u63d0\u4f9b\u8005\u3002

    PCB\u6839\u636e\u5176\u57fa\u677f\u6750\u6599\u7684\u4e0d\u540c\u800c\u4e0d\u540c\uff0c\u6709\u9ad8\u9891\u5fae\u6ce2\u677f\uff0c\u91d1\u5c5e\u57fa\u677f\uff0c\u94dd\u57fa\u677f\uff0c\u94c1\u57fa\u677f\uff0c\u94dc\u57fa\u677f\uff0c\u53cc\u9762\u677f\uff0c\u591a\u5c42\u677f\u7b49\u3002

    PCB\u7684\u82f1\u6587\u5168\u79f0\u662fPrinted Circuit Board\u3002\u662f\u91cd\u8981\u7684\u7535\u5b50\u5668\u4ef6\u3002

    Note

    \u6211\u4eec\u4e3b\u8981\u7528\u53cc\u9762\u677f\u3002

    PCB\u7684\u7ed3\u6784\u4e0e\u7ec4\u6210\u4e3b\u8981\u5305\u62ec\uff1a

    "},{"location":"Electrical%20Engineering/PCB%20Design/lecture1/#pcb\u7684\u5c42\u7ea7\u7ed3\u6784","title":"PCB\u7684\u5c42\u7ea7\u7ed3\u6784","text":""},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/1%E4%BB%8B%E7%BB%8D/","title":"\u7535\u8def\u4e0e\u78c1\u8def\u7684\u76f8\u4f3c\u6027","text":""},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/1%E4%BB%8B%E7%BB%8D/#\u78c1\u8def\u4e2d\u7684\u7269\u7406\u91cf","title":"\u78c1\u8def\u4e2d\u7684\u7269\u7406\u91cf","text":"

    \u78c1\u8def\u4e2d\u7684\u7269\u7406\u91cf\uff1a

    \u6e90\u6709\u4ec0\u4e48\u542b\u4e49\uff1f

    graph TD\n    A[\u7535\u52bf] --> B[\u7535\u6d41] --> E[\u7535\u538b\u964d]\n    C[\u78c1\u52bf] --> D[\u78c1\u901a] --> F[\u78c1\u538b\u964d]
    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/1%E4%BB%8B%E7%BB%8D/#\u78c1\u8def\u7684\u57fa\u672c\u5b9a\u5f8b","title":"\u78c1\u8def\u7684\u57fa\u672c\u5b9a\u5f8b","text":""},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/1%E4%BB%8B%E7%BB%8D/#\u5b89\u57f9\u73af\u8def\u5b9a\u5f8b\u5168\u7535\u6d41\u5b9a\u5f8b","title":"\u5b89\u57f9\u73af\u8def\u5b9a\u5f8b\u3001\u5168\u7535\u6d41\u5b9a\u5f8b","text":"\\[ \\oint H \\cdot dl = I \\]"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/1%E4%BB%8B%E7%BB%8D/#\u5b89\u57f9\u5b9a\u5f8b","title":"\u5b89\u57f9\u5b9a\u5f8b","text":"\\[ \\phi=\\frac{F}{R_m}=F\\Lambda_m \\]"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/1%E4%BB%8B%E7%BB%8D/#\u78c1\u8def\u7684\u6b27\u59c6\u5b9a\u5f8b","title":"\u78c1\u8def\u7684\u6b27\u59c6\u5b9a\u5f8b","text":"\\[ R_m =\\rho_m\\frac{l}{A}=\\frac{l}{\\mu A} \\]"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/1%E4%BB%8B%E7%BB%8D/#\u57fa\u5c14\u970d\u592b\u7b2c\u4e00\u5b9a\u5f8b","title":"\u57fa\u5c14\u970d\u592b\u7b2c\u4e00\u5b9a\u5f8b","text":"

    \u5bf9\u4e8e\u78c1\u8def\u4e2d\u67d0\u4e00\u4e2a\u95ed\u5408\u9762\u3002

    \\[ \\sum \\phi = 0 \\]"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/1%E4%BB%8B%E7%BB%8D/#\u57fa\u5c14\u970d\u592b\u7b2c\u4e8c\u5b9a\u5f8b","title":"\u57fa\u5c14\u970d\u592b\u7b2c\u4e8c\u5b9a\u5f8b","text":"

    \u5c01\u95ed\u78c1\u8def\u4e2d

    \\[ \\sum \\phi R_m = \\sum F \\]"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/1%E4%BB%8B%E7%BB%8D/#\u94c1\u78c1\u6750\u6599\u7684\u7279\u6027","title":"\u94c1\u78c1\u6750\u6599\u7684\u7279\u6027","text":""},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/1%E4%BB%8B%E7%BB%8D/#\u78c1\u6ede\u56de\u7ebf","title":"\u78c1\u6ede\u56de\u7ebf","text":"

    \u63cf\u8ff0B-H\u7684\u5173\u7cfb\uff0c\u6709\u4e24\u4e2a\u57fa\u672c\u7279\u6027\uff1a

    \u7535\u538b\\(U\\)\u2192\u7535\u52a8\u52bf\\(E\\)\u2192\u78c1\u901a\\(\\phi\\)\u2192\\(B\\)

    \u7535\u6d41\\(i\\)\u2192\u5168\u7535\u6d41\u5b9a\u5f8b\\(\\sum i\\)\u2192\u78c1\u52bf\\(F\\)\u2192\\(H\\)

    \u6240\u4ee5 $$ \\begin{align} B &= B(u)\\ H &= H(i) \\end{align} $$

    \u901a\u8fc7\u8fd9\u79cd\u903b\u8f91\u53ef\u4ee5\u628a\u78c1\u6ede\u56de\u7ebf\u8f6c\u5316\u6210\u7535\u538b\u548c\u7535\u6d41\u7684\u5173\u7cfb\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/2%E7%9B%B4%E6%B5%81%E7%94%B5%E6%9C%BA/","title":"\u76f4\u6d41\u7535\u673a","text":"

    Note

    \u8fd8\u5728\u5efa\u8bbe\u4e2d\uff0c\u656c\u8bf7\u671f\u5f85\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/2%E7%9B%B4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u672c\u7ae0\u4f5c\u4e1a","title":"\u672c\u7ae0\u4f5c\u4e1a","text":"This browser does not support PDFs"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/","title":"\u53d8\u538b\u5668","text":""},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u53d8\u538b\u5668\u7684\u57fa\u672c\u539f\u7406\u548c\u7ed3\u6784","title":"\u53d8\u538b\u5668\u7684\u57fa\u672c\u539f\u7406\u548c\u7ed3\u6784","text":""},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u53d8\u538b\u5668\u7684\u57fa\u672c\u539f\u7406","title":"\u53d8\u538b\u5668\u7684\u57fa\u672c\u539f\u7406","text":""},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u57fa\u672c\u5de5\u4f5c\u539f\u7406","title":"\u57fa\u672c\u5de5\u4f5c\u539f\u7406","text":"

    \u4ee5\u78c1\u573a\u4e3a\u5a92\u4ecb\uff0c\u901a\u8fc7\u7535\u78c1\u611f\u5e94\u4f5c\u7528\uff0c\u628a\u4e00\u79cd\u7535\u538b\u7684\u4ea4\u6d41\u7535\u8f6c\u5316\u6210\u53e6\u4e00\u79cd\u76f8\u540c\u9891\u7387\u7535\u538b\u7684\u4ea4\u6d41\u7535\u3002

    \u5173\u952e\u8bcd

    \u78c1\u573a\uff0c\u7535\u78c1\u611f\u5e94\uff0c\u7535\u538b\uff0c\u4ea4\u6d41\u7535\uff0c\u76f8\u540c\u9891\u7387

    \u6700\u5173\u952e\u7684\u4e24\u4e2a\u70b9\uff1a

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u53d8\u538b\u5668\u7684\u57fa\u672c\u7ed3\u6784","title":"\u53d8\u538b\u5668\u7684\u57fa\u672c\u7ed3\u6784","text":"

    \u901a\u8fc7\u7535\u5de5\u94a2\u7247\u53e0\u538b\u800c\u6210\u7684\u95ed\u5408\u78c1\u8def

    \u53e0\u7247\u7684\u76ee\u7684\uff1a\u51cf\u5c11\u6da1\u6d41

    \u539f\u8fb9\u7ebf\u5708\uff08\u4e00\u6b21\u4fa7\uff09AX\uff0c\u6b21\u8fb9\u7ebf\u5708\uff08\u4e8c\u6b21\u4fa7\uff09ax\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u53d8\u538b\u5668\u7684\u989d\u5b9a\u503c","title":"\u53d8\u538b\u5668\u7684\u989d\u5b9a\u503c","text":"

    \u4f7f\u7528\u53d8\u538b\u5668\u7684\u65f6\u5019\uff0c\u5fc5\u987b\u6ee1\u8db3\u4e00\u5b9a\u7684\u6761\u4ef6\u3002

    \u8f93\u5165\u7684\u7535\u538b\u548c\u7535\u6d41\u7684\u4e58\u79ef\u3002

    \u4e00\u6b21\u4fa7\uff1a\u8f93\u5165\u7684\u7535\u538b\u3002 \u4e8c\u6b21\u4fa7\uff1a\u4e00\u6b21\u4fa7\u989d\u5b9a\u65f6\uff0c\u8d1f\u8f7d\u7aef\u7a7a\u8f7d\u65f6\u7684\u7535\u538b\uff08\u7535\u52bf\uff09\u3002

    \u4e09\u76f8\u53d8\u538b\u5668\u4e2d\uff0c\u6307\u7684\u662f\u7ebf\u7535\u538b\u3002\uff08\u6240\u6709\u7684\u989d\u5b9a\u53c2\u6570\u6307\u7684\u90fd\u662f\u7ebf\u53c2\u6570\uff09

    \u5355\u76f8\uff1a $$ S_N=U_NI_N $$ \u4e09\u76f8\uff1a $$ S_N=\\sqrt{3}U_NI_N $$

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u53d8\u538b\u5668\u5206\u6790\u7684\u4e24\u4e2a\u57fa\u7840","title":"\u53d8\u538b\u5668\u5206\u6790\u7684\u4e24\u4e2a\u57fa\u7840","text":""},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u7406\u60f3\u53d8\u538b\u5668","title":"\u7406\u60f3\u53d8\u538b\u5668","text":"

    \u53d8\u538b\u5668\u7684\u8fd0\u884c\u8fc7\u7a0b\uff1a

    \u4e00\u6b21\u4fa7\u52a0\u7535\u538b\uff0c\u7535\u6d41\u6d41\u8fc7\u5bfc\u7ebf\uff0c\u56e0\u4e3a\u5bfc\u7ebf\u6709\u7535\u963b\uff0c\u6240\u4ee5\u4ea7\u751f\u94dc\u635f\uff08\u7535\u673a\u5b66\u4e2d\u7684\u4e60\u60ef\u53eb\u6cd5\uff09\u3002

    \u7535\u6d41\u4ea7\u751f\u78c1\u52bf\uff0c\u6240\u4ee5\u5c31\u4f1a\u4ea7\u751f\u4e3b\u78c1\u901a\u548c\u6f0f\u78c1\u901a\uff0c\u800c\u4ea4\u53d8\u7684\u78c1\u901a\u4f1a\u5728\u94c1\u82af\u4e2d\u4ea7\u751f\u6da1\u6d41\uff0c\u8fd9\u5c31\u662f\u94c1\u635f\u3002

    \u4e8c\u6b21\u4fa7\u7684\u7535\u6d41\u6d41\u8fc7\u5bfc\u7ebf\uff0c\u4e5f\u4f1a\u4ea7\u751f\u94dc\u635f\u3002

    \u603b\u7ed3

    \u94dc\u635f\uff0c\u94c1\u635f\uff0c\u78c1\u6f0f

    \u4e3b\u78c1\u901a\u548c\u6f0f\u78c1\u901a\u7684\u533a\u522b

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u6b63\u65b9\u5411\u539f\u5219","title":"\u6b63\u65b9\u5411\u539f\u5219","text":"

    \u4e00\u822c\u91c7\u7528\u7535\u52a8\u673a\u60ef\u4f8b\u3002

    \u5173\u952e

    \u7535\u6d41\u65b9\u5411\u548c\u7535\u52bf\u65b9\u5411\u4e00\u81f4\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u53d8\u538b\u5668\u7a7a\u8f7d\u8fd0\u884c\u65f6\u7684\u65b9\u7a0b\u5f0f","title":"\u53d8\u538b\u5668\u7a7a\u8f7d\u8fd0\u884c\u65f6\u7684\u65b9\u7a0b\u5f0f","text":"

    \u7a33\u6001\u7535\u538b\u5e73\u8861\uff1a $$ \\dot{U_1}=-\\dot{E_1}-\\dot{E_{1\\sigma}}+\\dot{I_0}r_1 $$

    \u7a7a\u8f7d\u7535\u6d41 \\(\\dot{I_0}\\)

    \u8ba4\u4e3a\u4e3b\u78c1\u901a\u6309\u7167\u6b63\u5f26\u89c4\u5f8b\u53d8\u5316\uff1a $$ \\phi=\\phi_m\\sin(\\omega t) $$ \u5219\u7535\u52a8\u52bf\u4e3a\uff1a $$ E_1=-N_1\\frac{d\\phi}{dt}=-N_1\\omega\\phi_m\\cos(\\omega t)=E_{1m}\\sin(\\omega t - 90\u00b0) $$ 4.44\u516c\u5f0f\uff1a $$ E_1=4.44f_1N_1\\phi_m $$ \u4e3a\u4ec0\u4e48\u5de6\u8fb9\u662f\u6709\u6548\u503c\uff0c\u53f3\u8fb9\u662f\u5cf0\u503c\uff1f\u56e0\u4e3a4.44\u6bd4\u8f83\u597d\u8bb0\u3002

    \u4e3b\u7535\u52bf\u6ede\u540e\u4e8e\u4e3b\u78c1\u901a90\u00b0\u3002\u540c\u65f6\uff0c\u9700\u8981\u6ce8\u610f\u4e3b\u7535\u52a8\u52bf\u548c\u4e3b\u78c1\u901a\u662f\u5782\u76f4\u7684\uff0c\u800c\u7a7a\u8f7d\u7535\u6d41\u4f1a\u548c\u4e3b\u78c1\u901a\u6709\u4e00\u70b9\u89d2\u5ea6\u5dee\u3002

    \u539f\u8fb9\u7684\u6f0f\u7535\u6297\uff1a

    \\[ \\begin{align*} \\dot{E_{1\\sigma}} & = -j\\omega L_{1\\sigma}\\dot{I_0}\\\\ x_{1} & = \\omega L_{1\\sigma} \\end{align*} \\]"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u53d8\u538b\u5668\u7684\u7535\u538b\u5e73\u8861\u65b9\u7a0b\u5f0f\u7a7a\u8f7d","title":"\u53d8\u538b\u5668\u7684\u7535\u538b\u5e73\u8861\u65b9\u7a0b\u5f0f\uff08\u7a7a\u8f7d\uff09","text":"\\[ \\begin{align*} \\dot{U_{10}} & = -\\dot{E_1}+\\dot{I_0}Z_1\\\\ \\dot{U_{20}} & = \\dot{E_2} \\end{align*} \\]

    \u5176\u4e2d\uff0c\u6211\u4eec\u79f0\\(Z_1\\)\u4e3a\u539f\u8fb9\u7ed5\u7ec4\u6f0f\u963b\u6297\u3002\u4ece\u6570\u503c\u4e0a\u6765\u770b\uff0c\u6f0f\u963b\u6297\u7684\u538b\u964d\u5f88\u5c0f\uff0c\u6240\u4ee5\u7535\u538b\u4e3b\u8981\u548c\u7535\u52bf\u76f8\u5e73\u8861\u3002

    \u5173\u952e

    \u53d8\u538b\u5668\u7684\u4e3b\u78c1\u901a\u4e3b\u8981\u53d6\u51b3\u4e8e\u7535\u7f51\u7535\u538b\uff0c\u9891\u7387\u548c\u531d\u6570\uff0c\u4e0e\u8d1f\u8f7d\u5927\u5c0f\u57fa\u672c\u65e0\u5173\uff0c\u4f1a\u7a0d\u6709\u53d8\u5316\u3002\u8fd9\u4e2a\u5c31\u662f\u6052\u78c1\u901a\u7684\u6982\u5ff5\u3002

    \u4e3a\u4e86\u8ba1\u7b97\u65b9\u4fbf\uff0c\u6211\u4eec\u5728\u8fd9\u91cc\u8ba4\u4e3a\\(-\\dot{E_1}\\)\u4e5f\u662f\u4e00\u4e2a\u7531\\(I_0\\)\u5f15\u8d77\u7684\u538b\u964d\uff0c\u4e0e\u4e4b\u5bf9\u5e94\u7684\uff0c\u5c31\u53ef\u4ee5\u5f15\u51fa\u52b1\u78c1\u963b\u6297\uff0c\u52b1\u78c1\u7535\u6d41\uff0c\u52b1\u78c1\u7535\u611f\u8fd9\u51e0\u4e2a\u7269\u7406\u91cf\u3002

    \\[ -\\dot{E_1}=\\dot{I_0}Z_{m}=\\dot{I_0}\\left(r_{m}+jx_{m}\\right) \\]

    \u4e0a\u9762\u7684\u7269\u7406\u91cf\u662f\u6709\u81ea\u5df1\u7684\u7269\u7406\u610f\u4e49\u7684\uff1a

    \u7a7a\u8f7d\u7684\u65f6\u5019\u7535\u538b\u548c\u7535\u6d41\u5438\u6536\u80fd\u91cf\uff0c\u4ee5\u8865\u507f\u94c1\u635f\u548c\u94dc\u635f\u3002\u7ecf\u8fc7\u63a8\u5bfc\uff0c\u53ef\u4ee5\u5f97\u5230\uff1a

    \\[ \\begin{align*} \\dot{U_1} &= -\\dot{E_1} + \\dot{I_0}Z_1\\\\ \\dot{U_1}\\dot{I_0} &= -\\dot{E_1}\\dot{I_0} + \\dot{I_0}^2Z_1\\\\ p_{Fe} &= -\\dot{E_1}\\cdot\\dot{I_0}\\\\ &=-\\dot{E_1}\\cdot \\left(\\dot{I_\\mu}+\\dot{I_{Fe}}\\right)\\\\ &=E_1I_{Fe} \\end{align*} \\]"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u53d8\u538b\u5668\u7684\u8d1f\u8f7d\u8fd0\u884c","title":"\u53d8\u538b\u5668\u7684\u8d1f\u8f7d\u8fd0\u884c","text":"

    \u5728\u4e0a\u4e00\u8282\u4e2d\uff0c\u6211\u4eec\u63d0\u5230\u4e86\u6052\u78c1\u901a\u7684\u6982\u5ff5\uff0c\u4e5f\u5c31\u662f\u53d8\u538b\u5668\u539f\u8fb9\u7684\\(E_1\\approx U_1=const\\)\u800c\u4e14\\(\\phi_m \\approx const\\)\u3002\u65e2\u7136\u4e3b\u78c1\u901a\u662f\u6052\u5b9a\u7684\uff0c\u6839\u636e\u57fa\u5c14\u970d\u592b\u7b2c\u4e8c\u5b9a\u5f8b\uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u5230\u603b\u78c1\u52bf\u662f\u6052\u5b9a\u7684\u3002

    \u5173\u952e

    \u78c1\u52a8\u52bf\u6052\u5b9a\u662f\u7531\u6052\u78c1\u901a\u4ee5\u53ca\u5ffd\u7565\u6f0f\u78c1\u5f97\u6765\u7684\uff0c\u8fd9\u4e2a\u5173\u7cfb\u5f0f\u8ba9\u6211\u4eec\u5efa\u7acb\u4e86\u8d1f\u8f7d\u7535\u6d41\u4e0e\u7a7a\u8f7d\u7535\u6d41\u4e4b\u95f4\u7684\u8054\u7cfb\u3002

    \u6240\u4ee5\u6839\u636e\u8fd9\u4e2a\u5f0f\u5b50\uff0c\u5c31\u53ef\u4ee5\u5217\u51fa\u4e00\u4e2a\u5f88\u91cd\u8981\u7684\u5173\u7cfb\u5f0f\uff1a

    \\[ \\begin{align*} \\dot{I_1}N_1 + \\dot{I_2}N_2 &= \\dot{I_0}N_1 \\\\ \\dot{I_1} + \\frac{1}{k} \\dot{I_2} &= \\dot{I_0} \\end{align*} \\]

    \u4ee4\u8fd9\u4e2a\u5173\u7cfb\u5f0f\u4e2d\uff0c\\(\\dot{I_1}=\\dot{I_0}+\\dot{I_L}\\)\uff0c\u7b80\u5355\u63a8\u4e00\u4e0b\u5c31\u53ef\u4ee5\u5f97\u5230

    \\[ \\begin{cases} \\dot{I_L}N_1 + \\dot{I_2}N_2 = 0\\\\ \\dot{I_2} = -k\\dot{I_L} \\end{cases} \\]

    \u7ed3\u8bba\uff1a

    \u63a5\u4e0b\u6765\u5206\u6790\u526f\u8fb9\u7684\u7535\u538b\u548c\u529f\u7387\uff0c\u56e0\u4e3a\u6bd4\u8f83\u7b80\u5355\uff0c\u6240\u4ee5\u76f4\u63a5\u7ed9\u51fa\u7ed3\u8bba\uff1a

    \u526f\u8fb9\u7684\u7535\u538b\uff1a\\(U_2\\approx E_2\\)

    \u526f\u8fb9\u7684\u529f\u7387\uff1a

    \\[ \\begin{align*} p_2 &= \\dot{U}_2\\dot{I}_2 \\approx \\dot{E}_2 \\left(-k\\dot{I}_{1L} \\right)\\\\ &= \\left(-\\dot{E}_1 \\right)\\left(-\\dot{I}_{1L} \\right) \\approx \\dot{U}_1 \\dot{I}_{1L}\\\\ &= \\dot{U}_{1}\\dot{I}_{1} - \\dot{U}_{1}\\dot{I}_{0} \\end{align*} \\]

    \u7ed3\u8bba\uff1a

    \u4ee5\u540e\uff0c\u6211\u4eec\u7528 \\(I_m\\) \u6765\u4ee3\u66ff \\(I_0\\) \u8868\u793a\u7a7a\u8f7d\u7535\u6d41\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u6298\u7b97\u7b49\u6548\u7535\u8def\u6807\u5e7a\u503c","title":"\u6298\u7b97\uff0c\u7b49\u6548\u7535\u8def\uff0c\u6807\u5e7a\u503c","text":"

    \u540e\u9762\u7684\u77e5\u8bc6\u70b9\uff0c\u6bd4\u5982\u6298\u7b97\uff0c\u7b49\u6548\u7535\u8def\uff0c\u6807\u5e7a\u503c\u90fd\u6bd4\u8f83\u7b80\u5355\uff08\u5982\u679c\u5145\u5206\u7406\u89e3\u4e86\u524d\u9762\u7684\u63a8\u5bfc\u7684\u8bdd\uff09\uff0c\u6240\u4ee5\u8fd9\u91cc\u5c31\u4e0d\u518d\u591a\u5199\u3002

    \u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u6700\u7b80\u7b49\u6548\u7535\u8def\u5e38\u5e38\u7528\u4e8e\u5b9a\u6027\u5206\u6790\uff0c\u5728\u5b9a\u91cf\u8ba1\u7b97\u7684\u65f6\u5019\u4e0d\u8981\u7528\u3002

    \u4e3a\u4e86\u66f4\u597d\u7684\u7406\u89e3\uff0c\u5efa\u8bae\u81ea\u5df1\u6839\u636e\u65b9\u7a0b\u753b\u4e00\u4e0bT\u578b\u7b49\u6548\u7535\u8def\u7684\u76f8\u91cf\u56fe\u3002

    \u8fd9\u91cc\u518d\u52a0\u4e00\u4e2a\u516c\u5f0f

    \\[ \\alpha = \\tan^{-1}\\frac{r_m}{x_m} \\]

    \u8fd9\u4e5f\u662f\\(\\alpha\\)\u88ab\u79f0\u4f5c\u94c1\u635f\u89d2\u7684\u539f\u56e0\uff0c\u5176\u5927\u5c0f\u4e3b\u8981\u53d6\u51b3\u4e8e\u94c1\u635f\u7535\u963b\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u53d8\u538b\u5668\u7684\u53c2\u6570\u6d4b\u5b9a","title":"\u53d8\u538b\u5668\u7684\u53c2\u6570\u6d4b\u5b9a","text":"

    \u6ce8\u610f

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/3%E5%8F%98%E5%8E%8B%E5%99%A8/#\u672c\u7ae0\u4f5c\u4e1a","title":"\u672c\u7ae0\u4f5c\u4e1a","text":"This browser does not support PDFs"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/","title":"\u5f02\u6b65\u4ea4\u6d41\u7535\u673a","text":"

    Note

    \u73b0\u5728\u57fa\u672c\u662f\u77e5\u8bc6\u70b9\u7684\u68b3\u7406\uff0c\u7b14\u8005\u7cbe\u529b\u548c\u65f6\u95f4\u6709\u9650\uff0c\u5f88\u591a\u516c\u5f0f\u7684\u63a8\u5bfc\u548c\u6574\u7406\u8fd8\u8bf7\u53c2\u89c1\u8bfe\u672c\u548c\u8001\u5e08\u7684ppt\uff0c\u6211\u8fd9\u91cc\u5c31\u662f\u987a\u4e86\u4e00\u904d\u601d\u8def\u3002

    \u5982\u679c\u80fd\u5e2e\u5230\u4f60\uff0c\u90a3\u5c31\u518d\u597d\u4e0d\u8fc7\u4e86\u3002\u53d1\u73b0\u95ee\u9898\u6b22\u8fce\u7ed9\u6211\u53d1\u90ae\u4ef6\u53cd\u6620\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u5f02\u6b65\u7535\u673a\u7684\u5206\u7c7b\u7ed3\u6784","title":"\u5f02\u6b65\u7535\u673a\u7684\u5206\u7c7b\u3001\u7ed3\u6784","text":"

    \u9f20\u7b3c\u578b\u8f6c\u5b50\u5236\u9020\u5de5\u827a\u6bd4\u8d77\u7ed5\u7ebf\u5f0f\u66f4\u52a0\u7b80\u5355\uff0c\u56e0\u6b64\u5e94\u7528\u66f4\u52a0\u5e7f\u6cdb\u3002

    \u7ed5\u7ebf\u5f0f\u8f6c\u5b50\u7684\u7279\u70b9\u662f\u53ef\u4ee5\u901a\u8fc7\u6ed1\u73af\u548c\u7535\u5237\u5728\u8f6c\u5b50\u7ed5\u7ec4\u4e2d\u52a0\u5165\u9644\u52a0\u7535\u963b\uff0c\u7528\u4e8e\u6539\u5584\u7535\u52a8\u673a\u7684\u8d77\u52a8\u65b0\u80fd\uff0c\u6216\u8c03\u8282\u7535\u52a8\u673a\u7684\u8f6c\u901f\u3002

    \u9f20\u7b3c\u578b\u7684\u7279\u70b9\u662f\u8f6c\u5b50\u7684\u6781\u5bf9\u6570\u4e0e\u5b9a\u5b50\u6781\u5bf9\u6570\u5339\u914d\uff0c\u9002\u5408\u53d8\u6781\u8c03\u901f\u573a\u5408\u3002

    \u8fd9\u91cc\u7684\u4e1c\u897f\u4e4b\u540e\u4f1a\u8be6\u7ec6\u8bf4\u3002

    \u5f02\u6b65\u7535\u52a8\u673a\u7684\u6c14\u9699\u8981\u6c42\u5c3d\u91cf\u5c0f\uff0c\u56e0\u4e3a\u5f02\u6b65\u7535\u673a\u7684\u8f6c\u5b50\u4e0a\u6ca1\u529e\u6cd5\u52a0\u52b1\u78c1\uff0c\u6240\u4ee5\u78c1\u573a\u5168\u90e8\u6765\u81ea\u4e8e\u5b9a\u5b50\u3002\u56e0\u4e3a\u8fd9\u4e2a\uff0c\u5982\u679c\u6c14\u9699\u5f88\u5927\uff0c\u90a3\u4e48\u5c31\u4f1a\u5bfc\u81f4\u4e3b\u78c1\u8def\u7684\u78c1\u963b\u589e\u5927\uff0c\u6240\u9700\u7684\u52b1\u78c1\u7535\u6d41\u5c31\u4f1a\u589e\u5927\uff0c\u529f\u7387\u56e0\u6570\u5c31\u4f1a\u964d\u4f4e\u3002\u6c14\u9699\u7684\u5927\u5c0f\u53d6\u51b3\u4e8e\u5de5\u827a\u6c34\u51c6\u3002

    \u4e0e\u53d8\u538b\u5668\u5bf9\u6bd4\uff1a

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u5f02\u6b65\u7535\u673a\u7684\u8fd0\u884c","title":"\u5f02\u6b65\u7535\u673a\u7684\u8fd0\u884c","text":"

    \u672c\u8282\u4e3b\u8981\u5305\u62ec

    \u65cb\u8f6c\u78c1\u573a\uff0c\u5de5\u4f5c\u539f\u7406\uff0c\u8f6c\u5dee\u7387\uff0c\u989d\u5b9a\u503c\uff0c\u8fd0\u884c\u53c2\u6570\u5206\u6790\u548c\u8ba1\u7b97

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u65cb\u8f6c\u78c1\u573a","title":"\u65cb\u8f6c\u78c1\u573a","text":"

    \u901a\u8fc7\u4e09\u76f8\u5bf9\u79f0\u4ea4\u6d41\u7535\u4f1a\u5728\u6c14\u9699\u4e2d\u4ea7\u751f\u65cb\u8f6c\u78c1\u573a\u3002

    \u65cb\u8f6c\u7684\u8f6c\u5411\uff08direction\uff09\u662f\u7531\u76f8\u5e8f\u51b3\u5b9a\u7684\uff0c\u6211\u4eec\u603b\u662f\u7531\u8d85\u524d\u7684\u76f8\u4f20\u5411\u6ede\u540e\u7684\u76f8\u3002

    \u91cd\u8981\u7684\u4e00\u70b9

    \u4ea4\u6362\u4efb\u610f\u4e24\u6781\u7684\u987a\u5e8f\uff0c\u5c31\u53ef\u4ee5\u6539\u53d8\u65cb\u8f6c\u78c1\u573a\u7684\u65b9\u5411\uff08\u65cb\u8f6c\u7684\u65b9\u5411\uff09\u3002\u4e5f\u5c31\u662f\u4efb\u610f\u4ea4\u6362\u5b9a\u5b50\u4fa7\u7684\u4e24\u6839\u7535\u6e90\u7ebf\u3002

    \u65cb\u8f6c\u7684\u901f\u5ea6\uff1a

    \\[ n_s = n_1 = \\frac{60f_1}{p}(r/min) \\]

    \u65cb\u8f6c\u78c1\u573a\u7684\u8f6c\u901f\u53d6\u51b3\u4e8e\u5b9a\u5b50\u7535\u6d41\u7684\u9891\u7387\\(f_1\\)\u548c\u7535\u52a8\u673a\u7684\u78c1\u6781\u5bf9\u6570\\(p\\)\u3002

    \u7b14\u8005\u6ce8

    \u8fd9\u4e2a\u5730\u65b9\uff0c\u53ea\u9700\u8981\u5b9a\u6027\u7684\u53bb\u60f3\u65cb\u8f6c\u78c1\u573a\u7684\u884c\u4e3a\u5c31\u53ef\u4ee5\u4e86\uff0c\u4e0d\u8981\u53bb\u60f3\u8fd9\u4e2a\u65cb\u8f6c\u7684\u78c1\u573a\u662f\u4e0d\u662f\u5747\u5300\u7684\uff0c\u5b83\u7684\u5927\u5c0f\u4f1a\u600e\u4e48\u53d8\uff0c\u56e0\u4e3a\u5b9a\u91cf\u7684\u8ba1\u7b97\u9700\u8981\u4f7f\u7528\u6709\u9650\u5143\u5206\u6790\u8fdb\u884c\u6570\u503c\u6a21\u62df\uff0c\u8ddf\u6211\u4eec\u8fd9\u4e2a\u8bfe\u5173\u7cfb\u4e0d\u5927\u3002

    \u603b\u4e4b\u4e00\u53e5\u8bdd\uff0c\u4e0d\u8981\u7ea0\u7ed3\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u5f02\u6b65\u7535\u673a\u7684\u5de5\u4f5c\u539f\u7406","title":"\u5f02\u6b65\u7535\u673a\u7684\u5de5\u4f5c\u539f\u7406","text":"

    \u5de6\u529b\u53f3\u7535\u7684\u5b9a\u5f8b\u3002

    \\[ \\begin{align*} E &= Blv\\\\ F &= Bil \\end{align*} \\]

    \u9f20\u7b3c\u7684\u6761\u76f8\u5bf9\u4e8e\u65cb\u8f6c\u78c1\u573a\u5f80\u76f8\u53cd\u7684\u65b9\u5411\u8fd0\u52a8\uff0c\u7136\u540e\u5c31\u4f1a\u4ea7\u751f\u7535\u52a8\u52bf\uff0c\u7535\u52a8\u52bf\u4f1a\u5e26\u6765\u7535\u6d41\uff0c\u800c\u8fd9\u4e2a\u7535\u6d41\u4f1a\u8ba9\u5bfc\u6761\u53d7\u529b\u3002\u4e00\u901a\u5206\u6790\u4e4b\u540e\uff0c\u8fd9\u4e2a\u53d7\u529b\u7684\u65b9\u5411\u4f1a\u548c\u78c1\u573a\u65cb\u8f6c\u7684\u65b9\u5411\u76f8\u540c\u3002\uff08\u7528\u695e\u6b21\u5b9a\u5f8b\u4e5f\u53ef\u4ee5\u89e3\u91ca\uff0c\u800c\u4e14\u66f4\u52a0\u76f4\u89c2\uff09

    \u4ece\u8fd9\u91cc\u7684\u53d7\u529b\u5c31\u53ef\u4ee5\u5206\u6790\u51fa\u201c\u5f02\u6b65\u201d\u5728\u4f55\u5904\u3002\u8bfb\u8005\u53ef\u4ee5\u60f3\u8c61\u4e00\u4e0b\uff0c\u76f8\u5f53\u4e8e\u8fd9\u4e2a\u65cb\u8f6c\u7684\u78c1\u573a\u518d\u7275\u7740\u4e00\u6839\u7ef3\u5b50\u62c9\u7740\u8f6c\u5b50\u8f6c\u52a8\uff0c\u800c\u8fd9\u4e2a\u78c1\u573a\u548c\u53d7\u529b\u662f\u4e0d\u5747\u5300\u7684\uff0c\u4e5f\u5c31\u662f\u7ef3\u5b50\u662f\u8f6f\u7684\uff0c\u6240\u4ee5\uff0c\u8f6c\u5b50\u4e00\u5b9a\u4f1a\u548c\u78c1\u573a\u5b58\u5728\u4e00\u5b9a\u7684\u5ef6\u65f6\uff0c\u8fd9\u5c31\u662f\u201c\u5f02\u6b65\u201d\u7684\u542b\u4e49\u3002

    \u6ce8\u610f

    \u56e0\u4e3a\u5f02\u6b65\u7535\u673a\u8f6c\u5b50\u4e0a\u7684\u7535\u6765\u81ea\u611f\u5e94\u800c\u975e\u5916\u52a0\uff0c\u6240\u4ee5\u6211\u4eec\u4e5f\u628a\u5f02\u6b65\u7535\u673a\u79f0\u4e3a\u201c\u611f\u5e94\u7535\u673a\u201d\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u8f6c\u5dee\u7387","title":"\u8f6c\u5dee\u7387","text":"

    \u5f97\u76ca\u4e8e\u4e0a\u9762\u5bf9\u201c\u5f02\u6b65\u201d\u7684\u5206\u6790\uff0c\u6211\u4eec\u5f88\u5bb9\u6613\u60f3\u5230\uff0c\u9700\u8981\u4e00\u4e2a\u7269\u7406\u91cf\u6765\u8861\u91cf\u78c1\u573a\u8f6c\u901f\u548c\u8f6c\u5b50\u8f6c\u901f\u7684\u5dee\u503c\uff0c\u606d\u559c\u4f60\u60f3\u5230\u4e86\u8f6c\u5dee\u7387\u7684\u5b9a\u4e49\u3002

    \\[ s = \\frac{n_s - n}{n_s} = \\frac{\\Delta n}{n_s} \\] \u72b6\u6001 \u8f6c\u5dee\u7387 \u8f6c\u901f\u5173\u7cfb \u7535\u52a8\u673a \\(0<s<1\\) \u7535\u78c1\u8f6c\u77e9\u7684\u65b9\u5411\u548c\u65cb\u8f6c\u78c1\u573a\uff0c\u4ee5\u53ca\u8f6c\u5b50\u7684\u65cb\u8f6c\u65b9\u5411\u90fd\u76f8\u540c\uff0c\u7535\u78c1\u8f6c\u77e9\u4e3a\u9a71\u52a8\u6027\u8d28\uff08\u62d6\u52a8\u4f5c\u7528\uff09\u7684\u8f6c\u77e9\u3002\u8f6c\u5b50\u8f6c\u901f\u5c0f\u4e8e\u65cb\u8f6c\u78c1\u573a\u3002 \u53d1\u7535\u673a \\(s<0\\) \u7535\u78c1\u8f6c\u77e9\u65b9\u5411\u548c\u65cb\u8f6c\u78c1\u573a\u4ee5\u53ca\u8f6c\u5b50\u8f6c\u5411\u90fd\u76f8\u53cd\uff0c\u7535\u78c1\u8f6c\u77e9\u4e3a\u5236\u52a8\u7684\u6027\u8d28\u3002\u8f6c\u5b50\u8f6c\u901f\u5927\u4e8e\u65cb\u8f6c\u78c1\u573a\uff1b \u7535\u78c1\u5236\u52a8 \\(s>1\\) \u7535\u78c1\u8f6c\u77e9\u65b9\u5411\u4e8e\u65cb\u8f6c\u78c1\u573a\u7684\u65b9\u5411\u76f8\u540c\uff0c\u4f46\u662f\u548c\u8f6c\u5b50\u65b9\u5411\u76f8\u53cd\uff0c\u4e3a\u5236\u52a8\u7684\u8f6c\u77e9\u3002"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u5f02\u6b65\u7535\u673a\u7684\u989d\u5b9a\u503c","title":"\u5f02\u6b65\u7535\u673a\u7684\u989d\u5b9a\u503c","text":"
    1. \u989d\u5b9a\u529f\u7387\uff1a\u8f93\u51fa\u7684\u673a\u68b0\u529f\u7387\u3002
    2. \u989d\u5b9a\u7535\u538b\uff1a\u989d\u5b9a\u72b6\u6001\u4e0b\u52a0\u8f7d\u5b9a\u5b50\u7ed5\u7ec4\u4e0a\u7684\u7ebf\u7535\u538b\u3002
    3. \u989d\u5b9a\u7535\u6d41\uff1a\u7535\u52a8\u673a\u5728\u5b9a\u5b50\u7ed5\u7ec4\u4e0a\u52a0\u989d\u5b9a\u7535\u538b\uff0c\u8f74\u4e0a\u8f93\u51fa\u989d\u5b9a\u529f\u7387\u7684\u65f6\u5019\uff0c\u5b9a\u5b50\u7ed5\u7ec4\u4e2d\u7684\u7ebf\u7535\u6d41\u3002
    4. \u989d\u5b9a\u9891\u7387\uff1a50Hz(China)
    5. \u989d\u5b9a\u8f6c\u901f\uff1a123\u6761\u4ef6\u4e0b\u7684\u8f6c\u8f74\u7684\u8f6c\u901f\u3002
    6. \u989d\u5b9a\u529f\u7387\u5f15\u8ff0\uff1a\u7535\u52a8\u673a\u52a0\u989d\u5b9a\u8d1f\u8f7d\u7684\u65f6\u5019\uff0c\u5b9a\u5b50\u4fa7\u7684\u529f\u7387\u56e0\u6570\u3002
    7. \u989d\u5b9a\u6548\u7387\uff1a\\(P_N / \\sqrt{3}U_NI_N\\)

    \u6ce8\u610f

    \u4e0a\u9762\u7684\u5404\u79cd\u4e1c\u897f\u9664\u4e86\u989d\u5b9a\u8f6c\u901f\u63cf\u8ff0\u7684\u662f\u8f6c\u5b50\u4e4b\u5916\uff0c\u5176\u4f59\u7684\u91cf\u6307\u7684\u90fd\u662f\u5b9a\u5b50\u3002

    \u5f02\u6b65\u7535\u673a\u7684\u529f\u7387\u56e0\u6570\u603b\u662f\u6ede\u540e\u7684\u3002\uff08\u53ea\u80fd\u4ece\u7535\u7f51\u5438\u6536\u65e0\u529f\uff0c\u611f\u6027\u8d1f\u8f7d\uff09

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u5f02\u6b65\u7535\u52a8\u673a\u8fd0\u884c\u53c2\u6570\u5206\u6790\u548c\u8ba1\u7b97","title":"\u5f02\u6b65\u7535\u52a8\u673a\u8fd0\u884c\u53c2\u6570\u5206\u6790\u548c\u8ba1\u7b97","text":"

    \u4e09\u76f8\u5f02\u6b65\u7535\u52a8\u673a\u7684\u7535\u78c1\u5173\u7cfb\u548c\u53d8\u538b\u5668\u7c7b\u4f3c\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u5047\u8bbe\u8f6c\u5b50\u4e0d\u8f6c","title":"\u5047\u8bbe\u8f6c\u5b50\u4e0d\u8f6c","text":"

    \u9891\u7387\u4e00\u6837\uff0c\u6240\u4ee5\u5c31\u5b8c\u5168\u548c\u53d8\u538b\u5668\u4e00\u6837\u3002

    \\[ \\begin{align*} U_1 \\approx E_1 &= 4.44 f_1 N_1 \\Phi_m k_{\\omega1}\\\\ U_2 \\approx E_2 &= 4.44 f_1 N_2 \\Phi_m k_{\\omega2} \\end{align*} \\]

    \u53c2\u6570\u5b9a\u4e49

    \\(k_{\\omega1}\\) \u548c \\(k_{\\omega2}\\) \u6307\u7684\u662f\u4e00\u6b21\u4fa7\u548c\u4e8c\u6b21\u4fa7\u7684\u7ed5\u7ec4\u7cfb\u6570\uff08\u6765\u81ea\u540c\u6b65\u7535\u673a\uff0c\u8bb0\u4f4f\u5c31\u884c\u4e86\uff09

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u8f6c\u5b50\u8f6c\u8d77\u6765\u4e86","title":"\u8f6c\u5b50\u8f6c\u8d77\u6765\u4e86","text":"

    \u8fd9\u65f6\u5019\u8f6c\u5b50\u611f\u5e94\u7535\u52bf\u7684\u9891\u7387\\(f_2\\)\u4e3a

    \\[ f_2 = \\frac{\\Delta n}{60} p = \\frac{n_s - n}{60} p = s \\frac{n_s p}{60} = s f_1 \\]

    \u8f6c\u5b50\u7535\u6d41\u7684\u9891\u7387\u662f\u53d8\u5316\u7684\uff0c\u4e8e\u8f6c\u5dee\u7387\u6709\u5173\u3002\u6b63\u5e38\u8fd0\u884c\u7684\u65f6\u5019\uff0c\u8f6c\u5b50\u7535\u6d41\u7684\u9891\u7387\u5f88\u4f4e\uff0c1-3Hz\u3002\u8d1f\u8f7d\u8d8a\u91cd\uff0c\u8f6c\u901f\u8d8a\u4f4e\uff0c\u8f6c\u5dee\u7387\u8d8a\u5927\uff0c\u8f6c\u5b50\u7684\u7535\u6d41\u9891\u7387\u5c31\u4f1a\u8d8a\u5927\u3002

    \u6240\u4ee5\uff0c\u8f6c\u5b50\u65cb\u8f6c\u65f6\u7684\u611f\u5e94\u7535\u52a8\u52bf\u4e3a\uff1a

    \\[ E_{2s} = 4.44 f_2 N_2 \\Phi_m k_{\\omega2} = sE_{2} \\]

    \u6ce8\u610f

    \\(E_{2s}\\) \u8868\u793a\u8f6c\u5b50\u8f6c\u52a8\u7684\u60c5\u666f\uff0c\u800c\\(E_{2}\\)\u5c31\u8868\u793a\u8f6c\u5b50\u4e0d\u8f6c\u7684\u60c5\u666f\u3002

    \u56e0\u4e3as\u4e00\u822c\u57280.01\u548c0.06\u4e4b\u95f4\uff0c\u6240\u4ee5\u7535\u673a\u4e2d\u5bf9\u8f6c\u5b50\u7684\u7edd\u7f18\u6c34\u5e73\u8981\u6c42\u5e76\u4e0d\u9ad8\u3002\u8f6c\u8d77\u6765\u7684\u65f6\u5019\u7535\u52a8\u52bf\u660e\u663e\u53d8\u5c0f\u3002

    \u4ece\u4e0a\u9762\u7684\u5206\u6790\u5c31\u80fd\u63a8\u5bfc\u51fa\u7b49\u6548\u7535\u8def\u3002

    \u6bd4\u8f83\u76f4\u89c2\u7684\u662f\uff0c\u8f6c\u5dee\u7387\\(s\\)\u8d8a\u5927\uff0c\u5219\\(I_2\\)\u8d8a\u5927\uff0c\u800c\u529f\u7387\u56e0\u6570\u5219\u53d8\u5c0f\u3002

    \u91cd\u8981\u7ed3\u8bba

    \u5b9a\u5b50\u78c1\u573a\u548c\u8f6c\u5b50\u78c1\u573a\u76f8\u5bf9\u9759\u6b62\u3002

    \u8fd9\u4e2a\u7ed3\u8bba\u4e00\u5f00\u59cb\u8fd8\u662f\u4e0d\u592a\u597d\u7406\u89e3\uff0c\u8fd9\u91cc\u5c31\u662f\u5728\u8f6c\u5b50\u78c1\u573a\u5728\u5b9e\u9645\u8f6c\u52a8\u7684\u57fa\u7840\u4e0a\uff0c\u56e0\u4e3a\u81ea\u8eab\u611f\u5e94\u51fa\u7684\u7535\u6d41\u4e5f\u4f1a\u4ea7\u751f\u78c1\u573a\uff0c\u6240\u4ee5\u5c31\u4f1a\u589e\u52a0 \\(\\Delta n\\)\uff0c\u6240\u4ee5\u548c\u5c31\u662f \\(n_s\\).

    \u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u8f6c\u5b50\u78c1\u573a\u7684\u8f6c\u901f\u548c\u8f6c\u5b50\u672c\u8eab\u7684\u8f6c\u901f\u4e0d\u4e00\u6837\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u4e09\u76f8\u5f02\u6b65\u7535\u673a\u7684\u7b49\u503c\u7535\u8def\u529f\u7387\u56fe\u8f6c\u77e9","title":"\u4e09\u76f8\u5f02\u6b65\u7535\u673a\u7684\u7b49\u503c\u7535\u8def\u3001\u529f\u7387\u56fe\u3001\u8f6c\u77e9","text":""},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u7b49\u503c\u7535\u8def","title":"\u7b49\u503c\u7535\u8def","text":"

    \u5f02\u6b65\u7535\u673a\u7684\u7b49\u503c\u7535\u8def\uff0c\u548c\u53d8\u538b\u5668\u6bd4\u8f83\u7c7b\u4f3c\uff0c\u4f46\u662f\u591a\u4e86\u4e00\u4e2a\u9891\u7387\u7684\u5f52\u7b97\u3002\u76f8\u5f53\u4e8e\u5728\u8f6c\u5b50\u4fa7\u4e32\u8054\u4e00\u4e2a\u5927\u5c0f\u4e3a \\(\\frac{1-s}{s} R_2\\) \u7684\u7eaf\u7535\u963b\uff0c\u8fd9\u6837\u5b50\u5c31\u53ef\u4ee5\u53d8\u6362\u6210\u8f6c\u5b50\u4e0d\u8f6c\u7684\u60c5\u5f62\u3002

    \u4e5f\u5c31\u662f\u4e8c\u6b21\u4fa7\u9891\u7387\u548c\u4e00\u6b21\u4fa7\u4e00\u6837\u3002

    \u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u8fd9\u4e2a\u4e32\u8054\u4e0a\u53bb\u7684\u7b49\u6548\u7535\u963b\u6d88\u8017\u7684\u529f\u7387\u662f\u603b\u673a\u68b0\u529f\u7387 \\(P_\\Omega\\)\u3002

    \u6ce8\u610f

    \u7b49\u6548\u7535\u8def\u4e2d\\(R_m\\)\u4f53\u73b0\u7684\u662f\u5b9a\u5b50\u4fa7\u7684\u94c1\u8017\uff0c\u56e0\u4e3a\u8f6c\u5b50\u4fa7\u7684\u9891\u7387\u5f88\u5c0f\uff0c\u53ef\u5ffd\u7565\u3002\u5206\u6790\u5f02\u6b65\u7535\u52a8\u673a\u7684\u94c1\u635f\u53ea\u6709\u5b9a\u5b50\u4fa7\u7684\u94c1\u635f\u3002

    \u8f93\u51fa\u673a\u68b0\u529f\u7387\u548c\u771f\u5b9e\u7684\u8f93\u51fa\u529f\u7387\u6709\u5dee\u5f02\uff0c\u9700\u8981\u51cf\u53bb\u673a\u68b0\u635f\u8017\uff08\u4e0d\u53d8\uff09\u548c\u9644\u52a0\u635f\u8017\uff08\u53ef\u53d8\uff09\u3002\u8fd9\u91cc\u548c\u76f4\u6d41\u7535\u673a\u662f\u7c7b\u4f3c\u7684\u3002

    \u4e24\u4e2a\u91cd\u8981\u7684\u529f\u7387\u5173\u7cfb\u5f0f\uff1a

    \\[ \\begin{align*} p_{Cu2} &= sP_{em}\\\\ P_{\\Omega} &= (1-s)P_{em} \\end{align*} \\]

    \u6240\u4ee5\u7535\u78c1\u529f\u7387\u4e00\u5b9a\u7684\u65f6\u5019\uff0c\u7535\u673a\u8f6c\u901f\u8d8a\u4f4e\uff0c\u94dc\u8017\u8d8a\u5927\uff0c\u673a\u68b0\u529f\u7387\u8d8a\u5c0f\u3002\u6211\u4eec\u4e00\u822c\u8981\u6c42\u5f02\u6b65\u7535\u52a8\u673a\u4e0d\u80fd\u957f\u671f\u5728\u4f4e\u901f\u4e0b\u957f\u65f6\u95f4\u8fd0\u884c\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u5f02\u6b65\u7535\u673a\u7684\u8f6c\u77e9","title":"\u5f02\u6b65\u7535\u673a\u7684\u8f6c\u77e9","text":"

    \u548c\u76f4\u6d41\u7535\u673a\u7c7b\u4f3c\uff0c\u4e0d\u518d\u8d58\u8ff0\u3002

    \\[ \\begin{align*} T &= \\frac{P}{\\Omega}\\\\ T &= 9.55 \\frac{P}{n} \\end{align*} \\]"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u5f02\u6b65\u7535\u673a\u7684\u673a\u68b0\u7279\u6027","title":"\u5f02\u6b65\u7535\u673a\u7684\u673a\u68b0\u7279\u6027","text":""},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u81ea\u7136\u673a\u68b0\u7279\u6027","title":"\u81ea\u7136\u673a\u68b0\u7279\u6027","text":"

    \u5b9a\u4e49\uff1a\u4e09\u76f8\u5f02\u6b65\u7535\u673a\u7684\u673a\u68b0\u7279\u6027\u662f\u6307\u4e8e\u7535\u538b\u3001\u9891\u7387\u548c\u53c2\u6570\u56fa\u5b9a\u7684\u6761\u4ef6\u4e0b\uff0c\u7535\u78c1\u8f6c\u77e9\u548c\u8f6c\u901f\u4e4b\u95f4\u7684\u51fd\u6570\u5173\u7cfb\u3002

    \u7269\u7406\u8868\u8fbe\u5f0f\uff1a

    \\[ T_e = C_T \\Phi_m I_2'\\cos \\phi_2 \\]

    \\(C_T\\)\u662f\u4e09\u76f8\u5f02\u6b65\u7535\u673a\u7684\u8f6c\u77e9\u5e38\u6570\uff0c\\(\\Phi_m\\)\u662f\u6c14\u9699\u4e3b\u78c1\u901a\uff0c\\(\\phi_2\\)\u662f\u8f6c\u5b50\u4fa7\u529f\u7387\u56e0\u6570\u89d2\u3002\u6211\u4eec\u4e00\u822c\u4f7f\u7528\u8fd9\u4e2a\u516c\u5f0f\u7528\u4f5c\u5b9a\u6027\u5206\u6790\u3002

    \u53c2\u6570\u8868\u8fbe\u5f0f\uff1a

    \\[ T_em = \\frac{P_{em}}{\\Omega_1}=\\frac{3I_2'R_2/s}{\\frac{2\\pi f_1}{p}}=\\frac{3p}{2\\pi f_1} \\cdot \\frac{U_1^2 R_2 / s}{\\left[R_1 + R_2/s\\right]^2 + \\left[x_{1\\sigma} + x_{2\\sigma}' \\right]^2} \\]

    \u8fd9\u4e2a\u516c\u5f0f\u5bf9\u539f\u6765\u7684\u7b49\u6548\u7535\u8def\u8fdb\u884c\u4e86\\(\\Gamma\\)\u7b49\u6548\u3002

    \u4e09\u76f8\u5f02\u6b65\u7535\u52a8\u673a\u5728\u7535\u538b\u3001\u9891\u7387\u5747\u4e3a\u989d\u5b9a\u503c\u4e0d\u53d8\uff0c\u5b9a\u3001\u8f6c\u5b50\u56de\u8def\u4e0d\u4e32\u5165\u4efb\u4f55\u7535\u8def\u5143\u4ef6\u7684\u6761\u4ef6\u4e0b\u7684\u673a\u68b0\u7279\u6027\u6210\u4e3a\u56fa\u6709\u673a\u68b0\u7279\u6027\u3002

    \u4e3a\u4ec0\u4e48\u8fd9\u91cc\u5b58\u5728\u540c\u4e00\u4e2a\u8f6c\u77e9\u5bf9\u5e94\u4e24\u79cd\u8f6c\u901f\u7684\u60c5\u51b5\uff1f\u5efa\u8bae\u628a\u56fe\u65cb\u8f6c90\u5ea6\uff0c\u5c31\u53d8\u6210\u4e86\u8f6c\u5dee\u7387\u548c\u8f6c\u77e9\u7684\u5173\u7cfb\uff0c\u8fd9\u6837\u5c31\u5f88\u597d\u7406\u89e3\u4e86\u3002

    \u8f6c\u901f\u6700\u5927\u7684\u70b9\u5bf9\u5e94\u7684\u8f6c\u901f\u5c31\u662f\\(n_s\\)\uff0c\u8fd9\u65f6\u8f6c\u5dee\u7387\u4e3a0\uff0c\u7535\u78c1\u8f6c\u77e9\u4e5f\u4e3a0\uff0c\u540c\u6837\u7684\uff0c\u8f6c\u901f\u4e3a0\u7684\u65f6\u5019\uff0c\u8f6c\u5dee\u7387\u4e3a1\uff0c\u8f93\u51fa\u7684\u8f6c\u77e9\u4e3a\\(T_{st}\\)

    \u4e34\u754c\u8f6c\u77e9\u548c\u4e34\u754c\u8f6c\u5dee

    \u6211\u4eec\u6700\u5173\u5173\u5fc3\u7684\u662f\u6781\u503c\u70b9\uff0c\u8fd9\u4e2a\u70b9\u7684\u8868\u8fbe\u5f0f\u53ef\u4ee5\u7528\u6c42\u5bfc\u5f97\u5230\uff0c\u56e0\u4e3a\u539f\u8fb9\u7684\u94dc\u8017\u6bd4\u8f83\u5c0f\uff0c\u8fdb\u4e00\u6b65\u5206\u6790\uff0c\u53ef\u4ee5\u5f97\u5230\uff1a

    \\[ \\begin{align*} T_{em} &\\propto K\\left(\\frac{U_1}{f_1}\\right)^2\\\\ s_m &\\approx \\frac{R_2'}{X_{1\\sigma} + X_{2\\sigma}'} \\end{align*} \\]

    \u6700\u5927\u8f6c\u77e9\u4e0e\u7535\u538b\u7684\u5e73\u65b9\u6210\u6b63\u6bd4\uff0c\u4e0e\u8f6c\u5b50\u7535\u963b\u65e0\u5173\u3002

    \u6700\u5927\u8f6c\u77e9

    \u6700\u5927\u8f6c\u77e9\u662f\u7535\u673a\u672c\u8eab\u7684\u7279\u6027\u53c2\u6570\u4e0e\u5916\u52a0\u8d1f\u8f7d\u65e0\u5173\uff0c\u4ec5\u4e0e\u76f8\u5173\u7535\u673a\u53c2\u6570\u6709\u5173\uff1a

    \u4e34\u754c\u8f6c\u5dee\u4e0e\u8f6c\u5b50\u7535\u963b\u6210\u6b63\u6bd4\uff0c\u4e0e\u7535\u538b\u5927\u5c0f\u65e0\u5173\u3002

    \u4e34\u754c\u8f6c\u5dee

    \u8d77\u52a8\u8f6c\u77e9

    \u7535\u673a\u521a\u542f\u52a8\u7684\u65f6\u5019\u7684\u8f6c\u77e9\u4e3a\u8d77\u52a8\u8f6c\u77e9\uff0c\u542f\u52a8\u8f6c\u77e9\u662f\u7535\u673a\u53c2\u6570\u76f8\u5173\u7684\u7535\u673a\u7279\u6027\uff0c\u548c\u8f6c\u5b50\u6240\u5e26\u7684\u8d1f\u8f7d\u65e0\u5173\u3002

    \u8d77\u52a8\u8f6c\u77e9

    \u8fc7\u8f7d\u80fd\u529b

    \u5b9a\u4e49\u5982\u4e0b\uff1a

    \\[ k_m = \\frac{T_{max}}{T_{N}} \\] \u603b\u7ed3 \u8f6c\u5b50\u7535\u963b\\(R_2'\\) \u7535\u538b\\(U_1\\) \u6700\u5927\u8f6c\u77e9 \\(T_{max}\\) \u65e0\u5173 \u5e73\u65b9\u6210\u6b63\u6bd4 \u4e34\u754c\u8f6c\u5dee\u7387 \\(s_m\\) \u6210\u6b63\u6bd4 \u65e0\u5173 \u8d77\u52a8\u8f6c\u77e9 \\(T_{st}\\) \u9002\u5f53\u589e\u52a0\u7535\u963b\u53ef\u589e\u52a0 \u5e73\u65b9\u6210\u6b63\u6bd4"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u4eba\u4e3a\u673a\u68b0\u7279\u6027","title":"\u4eba\u4e3a\u673a\u68b0\u7279\u6027","text":"

    \u4e3a\u4ec0\u4e48\u4e0d\u8003\u8651\u63d0\u5347\u7535\u538b

    \u7531\u4e8e\u4e0d\u80fd\u8ba9\u7535\u673a\u8fdb\u5165\u6b64\u78c1\u9971\u548c\u533a\uff0c\u6240\u4ee5\u53ea\u80fd\u964d\u4f4e\u7aef\u7535\u538b\u3002

    \u6362\u53e5\u8bdd\u8bf4\uff0c\u5c31\u662f\u63d0\u5347\u7535\u538b\u4e4b\u540e\uff0c\u8fdb\u5165\u9971\u548c\u533a\uff0c\u52b1\u78c1\u7535\u6d41\u589e\u5927\uff0c\u5f15\u8d77\u529f\u7387\u56e0\u6570\u964d\u4f4e\u3002

    \u76f8\u5173\u5206\u6790\u5c31\u5728\u4e0a\u9762\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u4e09\u76f8\u5f02\u6b65\u7535\u673a\u7684\u8d77\u52a8","title":"\u4e09\u76f8\u5f02\u6b65\u7535\u673a\u7684\u8d77\u52a8","text":"

    \u8d77\u52a8\u9700\u8981\u6ee1\u8db3\u7684\u6761\u4ef6\uff1a

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u964d\u538b\u8d77\u52a8","title":"\u964d\u538b\u8d77\u52a8","text":"

    \u56e0\u4e3a\u7535\u52a8\u673a\u7684\u8d77\u52a8\u7535\u6d41\u662f\u548c\u7535\u538b\u6210\u6b63\u6bd4\u7684\uff0c\u6240\u4ee5\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u964d\u4f4e\u7535\u538b\u6765\u964d\u4f4e\u8d77\u52a8\u7535\u6d41\u3002

    \u4f46\u968f\u4e4b\u8d77\u52a8\u8f6c\u77e9\u4e5f\u4f1a\u964d\u4f4e\uff0c\u6240\u4ee5\u8fd9\u79cd\u65b9\u6cd5\u53ea\u9002\u5408\u8f7b\u8f7d\u6216\u7a7a\u8f7d\u3002

    Y-\u25b3\u8d77\u52a8

    \u8fd9\u79cd\u65b9\u6cd5\u6cd5\u53ea\u9002\u7528\u4e8e\u6b63\u5e38\u8fd0\u884c\u65f6\u5b9a\u5b50\u7ed5\u7ec4\u4e3a\u4e09\u89d2\u5f62(\u25b3)\u63a5\u6cd5\u7684\u5f02\u6b65\u7535\u52a8\u673a\u3002

    \u81ea\u8026\u53d8\u538b\u5668\u8d77\u52a8

    \u81ea\u8026\u53d8\u538b\u5668\u53d8\u6bd4\u4e3a \\(k=\\frac{N_1}{N_2}\\)\uff0c\u5219\u8d77\u52a8\u7535\u6d41\u548c\u8d77\u52a8\u8f6c\u77e9\u90fd\u662f\u6b63\u5e38\u8fd0\u884c\u65f6\u7684 \\(\\frac{1}{k^2}\\)\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u4e32\u7535\u963b\u8d77\u52a8","title":"\u4e32\u7535\u963b\u8d77\u52a8","text":"

    \u7ed5\u7ebf\u578b\u5f02\u6b65\u7535\u52a8\u673a\u53ea\u8981\u5728\u8f6c\u5b50\u7535\u8def\u4e2d\u4e32\u63a5\u6070\u5f53\u5927\u5c0f\u7684\u7535\u963b\uff0c\u5c31\u53ef\u4ee5\u51cf\u5c0f\u8d77\u52a8\u7535\u6d41\uff0c\u540c\u65f6\u8fd8\u589e\u5927\u4e86\u8d77\u52a8\u8f6c\u77e9\uff0c\u9002\u7528\u4e8e\u91cd\u8f7d\u6216\u6ee1\u8f7d\u7684\u60c5\u51b5\u3002\u3001

    \u5206\u7ea7\u4e32\u7535\u963b

    \u539f\u7406\u76f4\u89c2\uff0c\u4e0d\u518d\u8d58\u8ff0\u3002

    \u4e32\u63a5\u9891\u654f\u53d8\u963b\u5668\u8d77\u52a8

    \u672c\u8d28\u539f\u7406\uff1a

    \\[ f_2 = sf_1 \\]

    \u9891\u654f\u53d8\u963b\u5668\u7684\u963b\u503c\u968f\u7740\u9891\u7387\u7684\u53d8\u5316\u800c\u53d8\u5316\uff0c\u6240\u4ee5\u53ef\u4ee5\u7528\u6765\u8c03\u8282\u7535\u963b\u503c\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u5f02\u6b65\u7535\u673a\u7684\u8c03\u901f","title":"\u5f02\u6b65\u7535\u673a\u7684\u8c03\u901f","text":"\\[ \\begin{align*} n_s &= \\frac{60f_1}{p}\\\\ n &= n_s(1-s) = \\frac{60f_1}{p}(1-s) \\end{align*} \\]"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u53d8\u9891\u8c03\u901f","title":"\u53d8\u9891\u8c03\u901f","text":"

    AC-DC-AC

    \u4e3b\u78c1\u901a\u5bf9\u7535\u673a\u8fd0\u884c\u7684\u5f71\u54cd

    \u4e3b\u78c1\u901a\u589e\u52a0\uff0c\u5f15\u8d77\u78c1\u8def\u7684\u8fc7\u5206\u9971\u548c\uff1a

    \u4e3b\u78c1\u901a\u51cf\u5c0f\uff1a

    \\[ U_1 \\approx E_1 = 4.44f_1N_1\\Phi_m k_{\\omega1} \\]

    \u4fdd\u6301\u4e3b\u78c1\u901a\u4e0d\u53d8\uff0c\u8c03\u8282\u9891\u7387\uff0c\u540c\u65f6\u964d\u4f4e\u7535\u538b\uff0c\u53ef\u4ee5\u5b9e\u73b0\u8c03\u901f\u3002

    \u5173\u952e\u5c31\u662f\u4fdd\u6301\\(U_1/f_1\\)\u4e3a\u5e38\u6570\u3002

    \u786c\u5ea6\u4e0d\u53d8\uff0c\u5f88\u9002\u5408\u6052\u8f6c\u77e9\u7684\u573a\u666f\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u53d8\u6781\u8c03\u901f\u6539\u53d8\u5b9a\u5b50\u4fa7\u7ed5\u7ec4\u7684\u6781\u5bf9\u6570","title":"\u53d8\u6781\u8c03\u901f\u2014\u2014\u6539\u53d8\u5b9a\u5b50\u4fa7\u7ed5\u7ec4\u7684\u6781\u5bf9\u6570","text":"

    \u53ea\u9002\u7528\u4e8e\u9f20\u7b3c\u578b\u5f02\u6b65\u7535\u673a\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u6539\u53d8\u8f6c\u5dee\u7387\u8c03\u901f","title":"\u6539\u53d8\u8f6c\u5dee\u7387\u8c03\u901f","text":"

    \u548c\u542f\u52a8\u7c7b\u4f3c\uff0c\u4e00\u4e2a\u662f\u964d\u4f4e\u7535\u538b\uff0c\u4e00\u4e2a\u662f\u4e32\u7535\u963b\u3002

    \u7279\u70b9\uff1a

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u8f6c\u5b50\u4e32\u7535\u963b\u8c03\u901f","title":"\u8f6c\u5b50\u4e32\u7535\u963b\u8c03\u901f","text":"

    \u5e26\u6052\u8f6c\u77e9\u8d1f\u8f7d\u65f6\u82e5\u589e\u5927\u6240\u4e32\u7535\u963b\uff0c\u7535\u673a\u7684\u8f6c\u901f\u4f1a\u964d\u4f4e\uff0c\u8f6c\u5dee\u7387\u589e\u5927\u3002

    \\[ \\frac{R_2'}{s} = \\frac{R_2' + R_\u4e32}{s'} \\]

    \u7535\u6e90\u7535\u538b\u4e00\u5b9a\uff0c\u8f6c\u5b50\u8d3f\u8d42\u4e32\u7535\u963b\u8c03\u901f\u7684\u65f6\u5019\uff0c\u8f6c\u5b50\u7535\u6d41\u53ef\u7ef4\u6301\u4e0d\u53d8\uff0c\u529f\u7387\u56e0\u6570\u4e0d\u53d8\uff0c\u4ece\u5b9a\u5b50\u4fa7\u8f93\u5165\u7684\u529f\u7387\u4e0d\u53d8\u3002

    \u6539\u53d8\u8f6c\u5dee\u7387\u53ea\u662f\u6539\u53d8\u4e86\u7535\u78c1\u529f\u7387\u5728\u94dc\u8017\u548c\u673a\u68b0\u4e4b\u95f4\u7684\u5206\u914d\uff0c\u603b\u503c\u662f\u4e0d\u53d8\u7684\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u5f02\u6b65\u7535\u673a\u7684\u5236\u52a8","title":"\u5f02\u6b65\u7535\u673a\u7684\u5236\u52a8","text":"

    \u4e3b\u8981\u5206\u4e3a\u673a\u68b0\u5236\u52a8\u548c\u7535\u6c14\u5236\u52a8\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u80fd\u8017\u5236\u52a8","title":"\u80fd\u8017\u5236\u52a8","text":"

    \u5c06\u5b9a\u5b50\u7ed5\u7ec4\u4ece\u4ea4\u6d41\u7535\u7f51\u8131\u79bb\uff0c\u5e76\u7acb\u5373\u901a\u5165\u76f4\u6d41\u7535\u6d41\uff0c\u5b9a\u5b50\u7ed5\u7ec4\u4ea7\u751f\u9759\u6b62\u7684\u6052\u5b9a\u78c1\u573a\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u53cd\u63a5\u5236\u52a8","title":"\u53cd\u63a5\u5236\u52a8","text":""},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u56de\u9988\u5236\u52a8","title":"\u56de\u9988\u5236\u52a8","text":"

    \u8f6c\u901f\u8d85\u8fc7\u65cb\u8f6c\u78c1\u573a\u540c\u6b65\u8f6c\u901f\uff0c\u53d1\u7535\u673a\u72b6\u6001\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/4%E4%BA%A4%E6%B5%81%E7%94%B5%E6%9C%BA/#\u672c\u7ae0\u4f5c\u4e1a","title":"\u672c\u7ae0\u4f5c\u4e1a","text":"This browser does not support PDFs"},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/5%E7%94%B5%E6%9C%BA%E6%8E%A7%E5%88%B6/","title":"\u7535\u673a\u7684\u7ee7\u7535-\u63a5\u89e6\u63a7\u5236","text":"

    \u6ce8\u610f

    \u8003\u8bd5\u5f62\u5f0f\u4e3a\u8bbe\u8ba1\u7535\u8def\u56fe

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/5%E7%94%B5%E6%9C%BA%E6%8E%A7%E5%88%B6/#\u63a7\u5236\u7528\u4f4e\u538b\u7535\u5668","title":"\u63a7\u5236\u7528\u4f4e\u538b\u7535\u5668","text":"

    AC1000V DC1200V \u5206\u4e3a\u9ad8\u538b\u63a7\u5236\u7535\u5668\u3001\u4f4e\u538b\u63a7\u5236\u7535\u5668

    \u6211\u4eec\u7814\u7a76\u4f4e\u538b\u7535\u5668\u3002

    \u5206\u7c7b\uff1a

    \u5f00\u5173\u5207\u7684\u662f\u706b\u7ebf\u3002

    \u4e0b\u9762\u662f\u63a7\u5236\u5668\u90e8\u5206\u3002\u52a8\u5408\u548c\u52a8\u65ad\uff0c\u9014\u4e2d\u7684\u662f\u52a8\u5408\u5f00\u5173\u3002

    \u63a5\u89e6\u5668\u7684\u6280\u672f\u4f9d\u636e\uff0c\u5305\u62ec\u989d\u5b9a\u7535\u538b\u548c\u989d\u5b9a\u7535\u6d41\uff0c\u4f7f\u7528\u7684\u90fd\u662f\u6709\u6548\u503c\uff0c\u800c\u4e14\u4ea4\u6d41\u548c\u76f4\u6d41\u7565\u6709\u4e0d\u540c\u3002

    \u7ee7\u7535\u5668\u3001\u4e2d\u95f4\u7ee7\u7535\u5668\uff08\u7565\u8fc7\uff09

    \u7ee7\u7535\u5668\u7684\u5b9a\u4e49\uff1a

    \u7528\u4e8e\u81ea\u52a8\u63a7\u5236\u7cfb\u7edf\u548c\u901a\u4fe1\u8bbe\u5907\u7684\u4e00\u79cd\u7535\u5668\u3002\u5f53\u7535\u538b\u3001\u7535\u6d41\u3001\u6e29\u5ea6\u3001\u538b\u529b\u7b49\u8fbe\u5230\u3001\u8d85\u8fc7\u6216\u4f4e\u4e8e\u9884\u5b9a\u503c\u65f6\uff0c\u7ee7\u7535\u5668\u4f1a\u63a5\u901a\u6216\u4e2d\u65ad\u7535\u8def\uff0c\u5bf9\u8bbe\u5907\u8d77\u63a7\u5236\u548c\u4fdd\u62a4\u4f5c\u7528\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/5%E7%94%B5%E6%9C%BA%E6%8E%A7%E5%88%B6/#\u7535\u6c14\u63a7\u5236\u7ebf\u8def\u57fa\u7840","title":"\u7535\u6c14\u63a7\u5236\u7ebf\u8def\u57fa\u7840","text":"

    \u8fd9\u4e2a\u5730\u65b9\u8bb2\u7684\u5c31\u662f\u600e\u4e48\u7528\u5f00\u5173\u5b9e\u73b0\u903b\u8f91\u8fd0\u7b97\u3002

    \u6ce8\u610f

    \u8fd9\u4e00\u90e8\u5206\u9700\u8981\u505a\u5230\u903b\u8f91\u7684\u5217\u5199\u548c\u753b\u7535\u8def\u56fe\u3002\u56e0\u4e3a\u662f\u534a\u5f00\u5377\uff0c\u8fd8\u662f\u6bd4\u8f83\u7b80\u5355\u7684\uff0c\u4e3b\u8981\u662f\u7406\u89e3\u5176\u4e2d\u7684\u610f\u601d\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/5%E7%94%B5%E6%9C%BA%E6%8E%A7%E5%88%B6/#\u57fa\u672c\u903b\u8f91","title":"\u57fa\u672c\u903b\u8f91","text":"

    \u4e0e\u903b\u8f91\uff1a\u5f00\u5173\u7684\u4e32\u8054\uff1b\u6216\u903b\u8f91\uff1a\u5f00\u5173\u7684\u5e76\u8054\uff1b\u975e\u903b\u8f91\uff1a\u52a8\u65ad\u5f00\u5173\uff1b

    \u7981\u903b\u8f91\uff1b

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/5%E7%94%B5%E6%9C%BA%E6%8E%A7%E5%88%B6/#\u9501\u5b9a\u903b\u8f91","title":"\u9501\u5b9a\u903b\u8f91","text":"

    \u81ea\u9501\u903b\u8f91\uff1a\u677e\u5f00\u5f00\u5173\u4e4b\u540e\uff0cY\u7684\u72b6\u6001\u4fdd\u6301\u4e0d\u53d8\uff1b

    \u4e92\u9501\u903b\u8f91\uff1a\u4e00\u4e2a\u7535\u5668\u88ab\u9501\u6b7b\u4e4b\u540e\uff0c\u53e6\u5916\u4e00\u4e2a\u7535\u5668\u4e5f\u88ab\u9501\u6b7b\uff1b

    \u8fde\u9501\uff1b\u8bb0\u5fc6\u903b\u8f91\uff1b\u5ef6\u8fdf\u903b\u8f91\uff1b

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/5%E7%94%B5%E6%9C%BA%E6%8E%A7%E5%88%B6/#\u903b\u8f91\u8bbe\u8ba1\u6cd5","title":"\u903b\u8f91\u8bbe\u8ba1\u6cd5","text":"

    \u8fd9\u4e2a\u5730\u65b9\u5c31\u548c\u6570\u5b57\u7535\u8def\u91cc\u9762\u5b66\u7684\u4e00\u6837\uff0c\u5c31\u662f\u5316\u7b80\u771f\u503c\u8868\u3002

    "},{"location":"Electrical%20Engineering/%E7%94%B5%E6%B0%94%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF/5%E7%94%B5%E6%9C%BA%E6%8E%A7%E5%88%B6/#\u4e09\u76f8\u5f02\u6b65\u7535\u52a8\u673a\u7684\u7ee7\u7535-\u63a5\u89e6\u63a7\u5236","title":"\u4e09\u76f8\u5f02\u6b65\u7535\u52a8\u673a\u7684\u7ee7\u7535-\u63a5\u89e6\u63a7\u5236","text":"

    \u8fd9\u91cc\u4e5f\u5c31\u662f\u5bf9\u524d\u9762\u5b66\u8fc7\u7684\u5f02\u6b65\u7535\u52a8\u673a\u8fdb\u884c\u6f14\u793a\uff0c\u8bb2\u5f97\u5f88\u5feb\uff0c\u770bppt\u5c31\u884c\u4e86\u3002

    \u603b\u7ed3

    \u8fd9\u4e2a\u90e8\u5206\u603b\u4f53\u6ca1\u600e\u4e48\u8bb2\uff0c\u5927\u6982\u770b\u770bppt\u5c31\u884c\u4e86\uff0c\u91cd\u5728\u7406\u89e3\u3002

    "},{"location":"Notes/test/","title":"Test","text":"

    This is a black document. Just a test.

    print(\"Hello, world!\")\n
    "},{"location":"Notes/test/#this-is-a-title","title":"This is a title","text":""},{"location":"Notes/test/#definition-list","title":"Definition List","text":""},{"location":"Notes/test/#footnotes","title":"Footnotes","text":"

    This is a piece of text1\u3002

    Title

    This is the content of the footnote.

    1. This is the content of the footnote.\u00a0\u21a9

    "},{"location":"Notes/%E4%BF%A1%E6%81%AF%E8%AE%BA%E4%B8%8E%E7%BC%96%E7%A0%81/2%E7%A6%BB%E6%95%A3%E4%BF%A1%E6%BA%90%E5%8F%8A%E5%85%B6%E4%BF%A1%E6%81%AF%E6%B5%8B%E5%BA%A6/","title":"\u79bb\u6563\u5e73\u7a33\u4fe1\u6e90","text":"

    Note

    \u8fd8\u5728\u5efa\u8bbe\u4e2d\uff0c\u656c\u8bf7\u671f\u5f85\u3002

    \u591a\u7b26\u53f7\u79bb\u6563\u4fe1\u6e90\uff1a

    \u591a\u7b26\u53f7\u79bb\u6563\u4fe1\u6e90\u8f93\u51fa\u7684\u6d88\u606f\u662f\u6309\u7167\u4e00\u5b9a\u6982\u7387\u9009\u53d6\u7684\u7b26\u53f7\u5e8f\u5217\uff0c\u5728\u65f6\u95f4\u5e8f\u5217\u7684\u6bcf\u4e00\u4e2a\u65f6\u95f4\u5355\u4f4d \\(k(k=1,2,\\cdots\\)\uff0c\u90fd\u53ef\u4ee5\u7531\u4e00\u4e2a\u968f\u673a\u53d8\u91cf \\(X_k\\) \u6765\u8868\u793a\u3002

    \u591a\u7b26\u53f7\u79bb\u6563\u4fe1\u6e90\u53ef\u7528\u968f\u673a\u53d8\u91cf\u5e8f\u5217 \\(\\{X_k\\}\\) \u7ec4\u6210\u7684\u968f\u673a\u5e8f\u5217\uff0c\u5373\u968f\u673a\u77e2\u91cf \\(X=\\{X_1,X_2,\\cdots,X_n\\}\\) \u6765\u8868\u793a\u3002

    "},{"location":"Notes/%E4%BF%A1%E6%81%AF%E8%AE%BA%E4%B8%8E%E7%BC%96%E7%A0%81/2%E7%A6%BB%E6%95%A3%E4%BF%A1%E6%BA%90%E5%8F%8A%E5%85%B6%E4%BF%A1%E6%81%AF%E6%B5%8B%E5%BA%A6/#\u79bb\u6563\u5e73\u7a33\u4fe1\u6e90\u7684\u6570\u5b66\u6a21\u578b","title":"\u79bb\u6563\u5e73\u7a33\u4fe1\u6e90\u7684\u6570\u5b66\u6a21\u578b","text":""},{"location":"Notes/%E4%BF%A1%E6%81%AF%E8%AE%BA%E4%B8%8E%E7%BC%96%E7%A0%81/2%E7%A6%BB%E6%95%A3%E4%BF%A1%E6%BA%90%E5%8F%8A%E5%85%B6%E4%BF%A1%E6%81%AF%E6%B5%8B%E5%BA%A6/#\u4e00\u822c\u968f\u673a\u5e8f\u5217","title":"\u4e00\u822c\u968f\u673a\u5e8f\u5217","text":"

    \u4e00\u822c\u60c5\u51b5\u4e0b\uff0c\u4fe1\u6e90\u7684\u6982\u7387\u5206\u5e03\u4e0e\u65f6\u95f4\u6709\u5173\uff0c\u4e0d\u540c\u65f6\u95f4\u7531\u4e0d\u540c\u7684\u6982\u7387\u5206\u5e03\u3002

    "},{"location":"Notes/%E4%BF%A1%E6%81%AF%E8%AE%BA%E4%B8%8E%E7%BC%96%E7%A0%81/2%E7%A6%BB%E6%95%A3%E4%BF%A1%E6%BA%90%E5%8F%8A%E5%85%B6%E4%BF%A1%E6%81%AF%E6%B5%8B%E5%BA%A6/#\u5e73\u7a33\u968f\u673a\u5e8f\u5217","title":"\u5e73\u7a33\u968f\u673a\u5e8f\u5217","text":"

    \u5e8f\u5217\u7684\u7edf\u8ba1\u6027\u8d28\u4e0e\u65f6\u95f4\u7684\u63a8\u79fb\u65e0\u5173\uff0c\u5373\u4fe1\u6e90\u6240\u53d1\u7b26\u53f7\u5e8f\u5217\u7684\u6982\u7387\u5206\u5e03\u4e0e\u65f6\u95f4\u8d77\u70b9\u65e0\u5173\u3002

    "},{"location":"Notes/%E4%BF%A1%E6%81%AF%E8%AE%BA%E4%B8%8E%E7%BC%96%E7%A0%81/2%E7%A6%BB%E6%95%A3%E4%BF%A1%E6%BA%90%E5%8F%8A%E5%85%B6%E4%BF%A1%E6%81%AF%E6%B5%8B%E5%BA%A6/#\u79bb\u6563\u5e73\u7a33\u4fe1\u6e90\u7684\u6570\u5b66\u6a21\u578b_1","title":"\u79bb\u6563\u5e73\u7a33\u4fe1\u6e90\u7684\u6570\u5b66\u6a21\u578b","text":"

    \uff081\uff09\u4e00\u7ef4\u5e73\u7a33\u4fe1\u6e90

    \u82e5 \\(P(x_i)=P(x_j)=P(x)\\)\uff0c\u5219\u5e8f\u5217\u662f\u4e00\u7ef4\u5e73\u7a33\u7684\u3002\u4efb\u610f\u4e24\u4e2a\u4e0d\u540c\u65f6\u523b\u4fe1\u6e90\u53d1\u51fa\u4fe1\u53f7\u7684\u6982\u7387\u5206\u5e03\u5b8c\u5168\u76f8\u540c\u3002

    \\[ P(x_i=a_1) = P(x_j=a_1) = P(x=a_1) \\\\ P(x_i=a_2) = P(x_j=a_2) = P(x=a_2) \\]

    \uff082\uff09\u4e8c\u7ef4\u5e73\u7a33\u4fe1\u6e90

    \u5982\u679c\u8054\u5408\u6982\u7387\u5206\u5e03 \\(P(x_i,x_j)\\) \u4e0e\u65f6\u95f4\u65e0\u5173\uff0c\u5373\\(P(x_ix_{i+1}=P(x_jx_{j+1}\\)\uff0c\u5219\u4fe1\u6e90\u662f\u4e8c\u7ef4\u5e73\u7a33\u7684\u3002

    \uff083\uff09\u79bb\u6563\u5e73\u7a33\u4fe1\u6e90

    \u5982\u679c\u5404\u7ef4\u8054\u5408\u6982\u7387\u5206\u5e03\u5747\u4e0e\u65f6\u95f4\u8d77\u70b9\u65e0\u5173\uff0c\u5219\u4fe1\u6e90\u662f\u5b8c\u5168\u5e73\u7a33\u7684\u3002

    \u4e0b\u9762\u6211\u4eec\u5047\u5b9a\uff1a

    "},{"location":"Notes/%E6%9C%BA%E5%99%A8%E4%BA%BA%E6%8A%80%E6%9C%AF%E4%B8%8E%E5%AE%9E%E8%B7%B5/lab3/","title":"lab3 \u673a\u68b0\u81c2\u6b63\u8fd0\u52a8\u5b66\u6c42\u89e3","text":""},{"location":"Notes/%E6%9C%BA%E5%99%A8%E4%BA%BA%E6%8A%80%E6%9C%AF%E4%B8%8E%E5%AE%9E%E8%B7%B5/lab3/#\u5199\u51fazju-i\u578b\u684c\u9762\u673a\u68b0\u81c2\u7684dh\u53c2\u6570","title":"\u5199\u51faZJU-I\u578b\u684c\u9762\u673a\u68b0\u81c2\u7684DH\u53c2\u6570","text":"

    \u6839\u636e\u8fd9\u4e2a\u56fe\uff1a

    \u518d\u7ed3\u5408\u6807\u51c6DH\u53c2\u6570\u7684\u5b9a\u4e49\uff0c\u53ef\u4ee5\u5199\u51faD-H\u53c2\u6570\u8868\uff1a

    Frame No. \\(a_i\\) \\(\\alpha_i\\) \\(d_i\\) \\(\\theta_i\\) 1 0 -90 230 \\(\\theta_1\\) 2 185 0 0 \\(\\theta_2\\left(-90\\right)\\) 3 170 0 0 \\(\\theta_3\\) 4 0 90 23 \\(\\theta_4\\left(90\\right)\\) 5 0 90 77 \\(\\theta_5\\left(90\\right)\\) 6 0 0 85.5 \\(\\theta_6\\)"},{"location":"Notes/%E6%9C%BA%E5%99%A8%E4%BA%BA%E6%8A%80%E6%9C%AF%E4%B8%8E%E5%AE%9E%E8%B7%B5/lab3/#\u5199\u51fazju-i\u578b\u673a\u68b0\u81c2\u7684\u6b63\u8fd0\u52a8\u5b66\u89e3\u91c7\u7528xyz\u6b27\u62c9\u89d2\u8868\u793a\u672b\u7aef\u6267\u884c\u5668\u59ff\u6001","title":"\u5199\u51faZJU-I\u578b\u673a\u68b0\u81c2\u7684\u6b63\u8fd0\u52a8\u5b66\u89e3\uff0c\u91c7\u7528XY\u2019Z\u2019\u6b27\u62c9\u89d2\u8868\u793a\u672b\u7aef\u6267\u884c\u5668\u59ff\u6001","text":"

    \u901a\u8fc7D-H\u53c2\u6570\u8868\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5199\u51fa\u76f8\u5e94\u7684 Transformation Matrix.

    \u6839\u636e\u8fd9\u4e9b\u77e9\u9635\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u901a\u8fc7\u77e9\u9635\u4e58\u6cd5\u6c42\u89e3\u672b\u7aef\u6267\u884c\u5668\u7684\u4f4d\u7f6e\u548c\u59ff\u6001\u3002\u5176\u4e2d\uff0c\u77e9\u9635\u7684\u6700\u540e\u4e00\u5217\u7684\u524d\u4e09\u884c\u8868\u793a\u5176\u4f4d\u7f6e\u5750\u6807\uff0c\u5de6\u4e0a\u89d2\\(3\\times3\\)\u7684\u5b50\u77e9\u9635\u5c31\u662f\u5b83\u7684\u65cb\u8f6c\u77e9\u9635\uff0c\u901a\u8fc7\u8fd9\u4e2a\u53ef\u4ee5\u6c42\u89e3\u51fa\u6700\u540e\u7684\u59ff\u6001\u3002

    \u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u901a\u8fc7\u6b27\u62c9\u89d2\u8868\u793a\u7684\u65f6\u5019\uff0c\u5176\u6570\u503c\u548c\u65cb\u8f6c\u987a\u5e8f\u6709\u5f88\u5927\u7684\u5173\u7cfb\u3002

    \u5728\u6211\u4eec\u4e0a\u8bfe\u7684\u65f6\u5019\u5b66\u7684\u662fX\u2192Y\u2192Z\u7684\u65cb\u8f6c\u987a\u5e8f\uff0c\u800c\u4eff\u771f\u8f6f\u4ef6Coppelia\u4e2d\u7528\u7684\u662fZ\u2192Y\u2192X\u7684\u65cb\u8f6c\u987a\u5e8f\uff0c\u5bf9\u5e94\u7684\u7ed3\u679c\u662f\u4e0d\u4e00\u6837\u7684\u3002

    \u6839\u636e\u4e0a\u8bfe\u5b66\u7684\u4e1c\u897f\uff0c\u6211\u4eec\u5206\u522b\u6709\uff1a

    \\[ \\begin{align*} R_x &= \\left(\\begin{array}{ccc} 1 & 0 & 0\\\\ 0 & \\cos\\left(a_{1}\\right) & -\\sin\\left(a_{1}\\right)\\\\ 0 & \\sin\\left(a_{1}\\right) & \\cos\\left(a_{1}\\right) \\end{array}\\right)\\\\ R_y &= \\left(\\begin{array}{ccc} \\cos\\left(a_{2}\\right) & 0 & \\sin\\left(a_{2}\\right)\\\\ 0 & 1 & 0\\\\ -\\sin\\left(a_{2}\\right) & 0 & \\cos\\left(a_{2}\\right) \\end{array}\\right)\\\\ R_z &= \\left(\\begin{array}{ccc} \\cos\\left(a_{3}\\right) & -\\sin\\left(a_{3}\\right) & 0\\\\ \\sin\\left(a_{3}\\right) & \\cos\\left(a_{3}\\right) & 0\\\\ 0 & 0 & 1 \\end{array}\\right) \\end{align*} \\]

    \u8fd9\u4e09\u4e2a\u77e9\u9635\u5c31\u662f\u5206\u522b\u7ed5X\uff0cY\uff0cZ\u8f74\u7684\u65cb\u8f6c\u77e9\u9635\uff08\\(a_1,a_2,a_3\\)\u5206\u522b\u8868\u793a\u5176\u7ed5X\uff0cY\uff0cZ\u8f74\u65cb\u8f6c\u7684\u89d2\u5ea6\uff09\uff0c\u800cresult1\u548cresult2\u5206\u522b\u8868\u793a\u4e86\u4e24\u79cd\u4e0d\u540c\u7684\u65cb\u8f6c\u987a\u5e8f\u3002

    \u6211\u4eec\u53ef\u4ee5\u4f7f\u7528MATLAB\u5f88\u65b9\u4fbf\u5730\u6c42\u89e3\u51fa\u65cb\u8f6c\u77e9\u9635\uff1a

    \u5f53\u6309\u7167X\u2192Y\u2192Z\u7684\u987a\u5e8f\u65cb\u8f6c\u65f6\uff0c\u65cb\u8f6c\u77e9\u9635\u662f\uff1a

    \\[ \\left(\\begin{array}{ccc} \\cos\\left(a_{2}\\right)\\,\\cos\\left(a_{3}\\right) & -\\cos\\left(a_{2}\\right)\\,\\sin\\left(a_{3}\\right) & \\sin\\left(a_{2}\\right)\\\\ \\cos\\left(a_{1}\\right)\\,\\sin\\left(a_{3}\\right)+\\cos\\left(a_{3}\\right)\\,\\sin\\left(a_{1}\\right)\\,\\sin\\left(a_{2}\\right) & \\cos\\left(a_{1}\\right)\\,\\cos\\left(a_{3}\\right)-\\sin\\left(a_{1}\\right)\\,\\sin\\left(a_{2}\\right)\\,\\sin\\left(a_{3}\\right) & -\\cos\\left(a_{2}\\right)\\,\\sin\\left(a_{1}\\right)\\\\ \\sin\\left(a_{1}\\right)\\,\\sin\\left(a_{3}\\right)-\\cos\\left(a_{1}\\right)\\,\\cos\\left(a_{3}\\right)\\,\\sin\\left(a_{2}\\right) & \\cos\\left(a_{3}\\right)\\,\\sin\\left(a_{1}\\right)+\\cos\\left(a_{1}\\right)\\,\\sin\\left(a_{2}\\right)\\,\\sin\\left(a_{3}\\right) & \\cos\\left(a_{1}\\right)\\,\\cos\\left(a_{2}\\right) \\end{array}\\right) \\]

    \u800c\u6309\u7167Z\u2192Y\u2192X\u7684\u987a\u5e8f\u65cb\u8f6c\u7684\u65f6\u5019\uff0c\u65cb\u8f6c\u77e9\u9635\u662f\uff1a

    \\[ \\left(\\begin{array}{ccc} \\cos\\left(a_{2}\\right)\\,\\cos\\left(a_{3}\\right) & \\cos\\left(a_{3}\\right)\\,\\sin\\left(a_{1}\\right)\\,\\sin\\left(a_{2}\\right)-\\cos\\left(a_{1}\\right)\\,\\sin\\left(a_{3}\\right) & \\sin\\left(a_{1}\\right)\\,\\sin\\left(a_{3}\\right)+\\cos\\left(a_{1}\\right)\\,\\cos\\left(a_{3}\\right)\\,\\sin\\left(a_{2}\\right)\\\\ \\cos\\left(a_{2}\\right)\\,\\sin\\left(a_{3}\\right) & \\cos\\left(a_{1}\\right)\\,\\cos\\left(a_{3}\\right)+\\sin\\left(a_{1}\\right)\\,\\sin\\left(a_{2}\\right)\\,\\sin\\left(a_{3}\\right) & \\cos\\left(a_{1}\\right)\\,\\sin\\left(a_{2}\\right)\\,\\sin\\left(a_{3}\\right)-\\cos\\left(a_{3}\\right)\\,\\sin\\left(a_{1}\\right)\\\\ -\\sin\\left(a_{2}\\right) & \\cos\\left(a_{2}\\right)\\,\\sin\\left(a_{1}\\right) & \\cos\\left(a_{1}\\right)\\,\\cos\\left(a_{2}\\right) \\end{array}\\right) \\]

    \u5728\u8fd9\u7bc7\u62a5\u544a\u4e2d\uff0c\u4e3a\u4e86\u548c\u4eff\u771f\u8f6f\u4ef6\u5bf9\u5e94\uff0c\u6211\u4eec\u7edf\u4e00\u91c7\u7528\u7b2c\u4e00\u79cd\u65cb\u8f6c\u77e9\u9635\u3002

    \u6240\u4ee5\uff0c\u5c31\u53ef\u4ee5\u901a\u8fc7\u8fd9\u4e2a\u65cb\u8f6c\u77e9\u9635\u6c42\u89e3\u6b27\u62c9\u89d2\uff1a

    # phi, theta, psi\u5206\u522b\u8868\u793a\u7ed5X\uff0cY\uff0cZ\u8f74\u65cb\u8f6c\u7684\u89d2\u5ea6\u3002\ndef T2eularAngle(T):\n    R = T[:3, :3]\n    location = T[:3, 3] / 1000\n    theta = math.asin(R[0, 2]) * 180 / pi\n    phi = math.atan2(-R[1, 2], R[2, 2]) * 180 / pi\n    psi = math.atan2(-R[0, 1], R[0, 0]) * 180 / pi\n    # \u62fc\u63a5\u5750\u6807\u548c\u89d2\u5ea6\n    return np.hstack((location, np.array([phi, theta, psi])))\n
    "},{"location":"Notes/%E6%9C%BA%E5%99%A8%E4%BA%BA%E6%8A%80%E6%9C%AF%E4%B8%8E%E5%AE%9E%E8%B7%B5/lab3/#\u8ba1\u7b97\u7ed3\u679c\u548c\u4eff\u771f\u7ed3\u679c\u7684\u5bf9\u6bd4","title":"\u8ba1\u7b97\u7ed3\u679c\u548c\u4eff\u771f\u7ed3\u679c\u7684\u5bf9\u6bd4","text":"

    \u5c06\u4ee5\u4e0b5\u7ec4\u5173\u8282\u89d2\u53c2\u6570\u5e26\u5165\u6b63\u8fd0\u52a8\u5b66\u89e3\uff0c\u8ba1\u7b97\u673a\u68b0\u81c2\u672b\u7aefTip\u70b9\u7684\u7a7a\u95f4\u4f4d\u7f6e\uff0c\u8ba1\u7b97\u672b\u7aef\u6267\u884c\u5668\u7684\u59ff\u6001\uff0c\u4ee5XY\u2019Z\u2019\u6b27\u62c9\u89d2\u8868\u793a\u7ed3\u679c:

    \u5b9e\u9a8c\u7ec4\u53f7 x y z \\(\\phi\\) \\(\\theta\\) \\(\\psi\\) 1 0.095 0.164 0.608 -104.50 -3.33 -154.29 2 0.246 0.254 0.347 -123.69 -25.66 -76.10 3 -0.097 0.246 0.460 -120.00 -60.00 -150.00 4 -0.271 0.209 0.473 -13.06 7.43 150.85 5 0.226 0.107 0.552 -148.00 36.35 -107.00

    \u8ba1\u7b97\u7ed3\u679c

    \u5b9e\u9a8c\u7ec4\u53f7 x y z \\(\\phi\\) \\(\\theta\\) \\(\\psi\\) 1 0.090 0.164 0.607 -104.54 -3.36 -154.30 2 0.245 0.254 0.347 -123.74 -25.69 -76.05 3 -0.097 0.246 0.460 -120.07 -60.00 -150.04 4 -0.272 0.209 0.472 -13.15 7.38 150.87 5 0.226 0.107 0.552 -148.05 36.31 -107.00

    \u4eff\u771f\u7ed3\u679c

    \u7531\u4e0a\u9762\u4e24\u4e2a\u8868\u53ef\u4ee5\u770b\u51fa\uff0c\u6211\u4eec\u6309\u7167\u6b63\u8fd0\u52a8\u5b66\u8ba1\u7b97\u51fa\u7684\u7ed3\u679c\u548c\u4eff\u771f\u8f6f\u4ef6\u8dd1\u51fa\u6765\u7684\u7ed3\u679c\u57fa\u672c\u4e0a\u662f\u4e00\u81f4\u7684\uff0c\u53ef\u80fd\u6709\u4e00\u4e9b\u8bef\u5dee\u5bfc\u81f4\u4eff\u771f\u8f6f\u4ef6\u7684\u7ed3\u679c\u548c\u6211\u4eec\u7684\u8ba1\u7b97\u6709\u4e00\u70b9\u4e0d\u4e00\u6837\u3002

    \u8fd9\u4e2a\u8fc7\u7a0b\u8fd8\u662f\u6bd4\u8f83\u7b80\u5355\u7684\uff0c\u4e5f\u5c31\u662f\u901a\u8fc7\u4e0a\u9762\u7684\u53d8\u6362\u77e9\u9635\u7b97\u51fa\u6765\u4e00\u4e2a\u603b\u7684\u9f50\u6b21\u53d8\u6362\u77e9\u9635\uff0c\u8fd9\u4e2a\u77e9\u9635\u91cc\u9762\u5305\u542b\u4e86\u672b\u7aef\u6267\u884c\u70b9\u7684\u4f4d\u7f6e\u548c\u59ff\u6001\u4fe1\u606f\uff0c\u6839\u636e\u4e00\u4e9b\u89c4\u5219\u5c31\u53ef\u4ee5\u628a\u8fd9\u4e2a\u77e9\u9635\u91cc\u9762\u8ba1\u7b97\u7684\u7ed3\u679c\u53d8\u6210\u6211\u4eec\u9700\u8981\u7684\u6837\u5b50\u3002

    \u6bd4\u8f83tricky\u7684\u4e24\u4e2a\u70b9\uff0c\u4e00\u4e2a\u5c31\u662f\u524d\u9762\u63d0\u5230\u7684\u65cb\u8f6c\u987a\u5e8f\uff0c\u53e6\u5916\u5c31\u662f\u9700\u8981\u628a\u8ba1\u7b97\u5f97\u5230\u7684\u5f27\u5ea6\u5236\u6362\u7b97\u6210\u89d2\u5ea6\u5236\u3002

    "},{"location":"Notes/%E6%9C%BA%E5%99%A8%E4%BA%BA%E6%8A%80%E6%9C%AF%E4%B8%8E%E5%AE%9E%E8%B7%B5/lab3/#\u9644\u4ef6\u6b63\u8fd0\u52a8\u5b66\u6e90\u4ee3\u7801python","title":"\u9644\u4ef6\uff1a\u6b63\u8fd0\u52a8\u5b66\u6e90\u4ee3\u7801\uff08python\uff09","text":"
    import numpy as np\nimport math\nfrom math import pi\n\ntheta = [pi/12, pi/12, pi/12, pi/12, pi/12, pi/12]\n\ntheta = np.array([theta[0], theta[1] - pi/2, theta[2], theta[3] + pi/2, theta[4] + pi/2, theta[5]])\n\na1, alpha1, d1 = 0, -pi/2, 230\na2, alpha2, d2 = 185, 0, 0\na3, alpha3, d3 = 170, 0, 0\na4, alpha4, d4 = 0, pi/2, 23\na5, alpha5, d5 = 0, pi/2, 77\na6, alpha6, d6 = 0, 0, 85.5\n\nDH = np.array([\n    [theta[0], d1, a1, alpha1],\n    [theta[1], d2, a2, alpha2],\n    [theta[2], d3, a3, alpha3],\n    [theta[3], d4, a4, alpha4],\n    [theta[4], d5, a5, alpha5],\n    [theta[5], d6, a6, alpha6]\n])\n\ndef T2eularAngle(T):\n    R = T[:3, :3]\n    location = T[:3, 3] / 1000\n    theta = math.asin(R[0, 2]) * 180 / pi\n    phi = math.atan2(-R[1, 2], R[2, 2]) * 180 / pi\n    psi = math.atan2(-R[0, 1], R[0, 0]) * 180 / pi\n    # \u62fc\u63a5\u5750\u6807\u548c\u89d2\u5ea6\n    return np.hstack((location, np.array([phi, theta, psi])))\n\ndef DH_matrix(theta, d, a, alpha):\n    return np.array([\n        [np.cos(theta), -np.sin(theta)*np.cos(alpha), np.sin(theta)*np.sin(alpha), a*np.cos(theta)],\n        [np.sin(theta), np.cos(theta)*np.cos(alpha), -np.cos(theta)*np.sin(alpha), a*np.sin(theta)],\n        [0, np.sin(alpha), np.cos(alpha), d],\n        [0, 0, 0, 1]\n    ])\n\n\ndef forward_kinematics(theta):\n    Total_T = np.eye(4)\n    for i in range(6):\n        theta_i = theta[i]\n        d_i = DH[i, 1]\n        a_i = DH[i, 2]\n        alpha_i = DH[i, 3]\n        Total_T = np.dot(Total_T, DH_matrix(theta_i, d_i, a_i, alpha_i))\n\n    result = T2eularAngle(Total_T)\n\n\n    return result\n\nif __name__ == '__main__':\n    result = forward_kinematics(theta)\n    print(result)\n
    "},{"location":"Notes/%E6%9C%BA%E5%99%A8%E4%BA%BA%E6%8A%80%E6%9C%AF%E4%B8%8E%E5%AE%9E%E8%B7%B5/lab4/","title":"lab4 \u673a\u68b0\u81c2\u9006\u8fd0\u52a8\u5b66\u6c42\u89e3","text":""},{"location":"Notes/%E6%9C%BA%E5%99%A8%E4%BA%BA%E6%8A%80%E6%9C%AF%E4%B8%8E%E5%AE%9E%E8%B7%B5/lab4/#\u9006\u8fd0\u52a8\u5b66\u89e3\u6790\u89e3","title":"\u9006\u8fd0\u52a8\u5b66\u89e3\u6790\u89e3","text":"

    \u6211\u4eec\u5df2\u77e5\u7684\u662f\u672b\u7aef\u7684\u4f4d\u59ff\\(T\\)\uff0c\u6ee1\u8db3\uff1a

    \\[ T = T_0^6 = T_1^0T_2^1T_3^2T_4^3T_5^4T_6^5 \\]

    \u6211\u4eec\u5047\u8bbe

    \\[ T = \\left(\\begin{array}{cccc} \\mathrm{nx} & \\mathrm{ox} & \\mathrm{ax} & \\mathrm{dx}\\\\ \\mathrm{ny} & \\mathrm{oy} & \\mathrm{ay} & \\mathrm{dy}\\\\ \\mathrm{nz} & \\mathrm{oz} & \\mathrm{az} & \\mathrm{dz}\\\\ 0 & 0 & 0 & 1 \\end{array}\\right) \\]

    \u5176\u4e2d\uff0c\\(T_0^6\\)\u662f\u672b\u7aef\u7684\u5168\u5c40\u4f4d\u59ff\uff0c\\(T_i^{i-1}\\)\u662f\u7b2c\\(i\\)\u4e2a\u5173\u8282\u7684\u53d8\u6362\u77e9\u9635\u3002

    \u901a\u8fc7\u8fd9\u91cc\uff0c\u53ef\u4ee5\u7b97\u51fa\\(T_6^1\\)\u6ee1\u8db3\uff1a

    \\[ T_6^1 = T_2^1T_3^2T_4^3T_5^4T_6^5 \\]

    \u4ee3\u5165\u4e0a\u9762\u7684\u53d8\u6362\u77e9\u9635\uff0c\u53ef\u4ee5\u5f97\u5230\uff1a

    \\[ T_6^1 = \\left(\\begin{array}{cccc} \\sin\\left(t_{2}+t_{3}+t_{4}\\right)\\,\\sin\\left(t_{6}\\right)-\\cos\\left(t_{2}+t_{3}+t_{4}\\right)\\,\\cos\\left(t_{6}\\right)\\,\\sin\\left(t_{5}\\right) & \\sin\\left(t_{2}+t_{3}+t_{4}\\right)\\,\\cos\\left(t_{6}\\right)+\\cos\\left(t_{2}+t_{3}+t_{4}\\right)\\,\\sin\\left(t_{5}\\right)\\,\\sin\\left(t_{6}\\right) & \\cos\\left(t_{2}+t_{3}+t_{4}\\right)\\,\\cos\\left(t_{5}\\right) & \\frac{17\\,\\sin\\left(t_{2}+t_{3}\\right)}{100}+\\frac{37\\,\\sin\\left(t_{2}\\right)}{200}-\\cos\\left(t_{5}\\right)\\,\\left(\\frac{171\\,\\sin\\left(t_{2}+t_{3}\\right)\\,\\sin\\left(t_{4}\\right)}{2000}-\\frac{171\\,\\cos\\left(t_{2}+t_{3}\\right)\\,\\cos\\left(t_{4}\\right)}{2000}\\right)+\\frac{77\\,\\cos\\left(t_{2}+t_{3}\\right)\\,\\sin\\left(t_{4}\\right)}{1000}+\\frac{77\\,\\sin\\left(t_{2}+t_{3}\\right)\\,\\cos\\left(t_{4}\\right)}{1000}\\\\ -\\cos\\left(t_{2}+t_{3}+t_{4}\\right)\\,\\sin\\left(t_{6}\\right)-\\sin\\left(t_{2}+t_{3}+t_{4}\\right)\\,\\cos\\left(t_{6}\\right)\\,\\sin\\left(t_{5}\\right) & \\sin\\left(t_{2}+t_{3}+t_{4}\\right)\\,\\sin\\left(t_{5}\\right)\\,\\sin\\left(t_{6}\\right)-\\cos\\left(t_{2}+t_{3}+t_{4}\\right)\\,\\cos\\left(t_{6}\\right) & \\sin\\left(t_{2}+t_{3}+t_{4}\\right)\\,\\cos\\left(t_{5}\\right) & \\frac{77\\,\\sin\\left(t_{2}+t_{3}\\right)\\,\\sin\\left(t_{4}\\right)}{1000}-\\frac{37\\,\\cos\\left(t_{2}\\right)}{200}-\\frac{17\\,\\cos\\left(t_{2}+t_{3}\\right)}{100}+\\cos\\left(t_{5}\\right)\\,\\left(\\frac{171\\,\\cos\\left(t_{2}+t_{3}\\right)\\,\\sin\\left(t_{4}\\right)}{2000}+\\frac{171\\,\\sin\\left(t_{2}+t_{3}\\right)\\,\\cos\\left(t_{4}\\right)}{2000}\\right)-\\frac{77\\,\\cos\\left(t_{2}+t_{3}\\right)\\,\\cos\\left(t_{4}\\right)}{1000}\\\\ \\cos\\left(t_{5}\\right)\\,\\cos\\left(t_{6}\\right) & -\\cos\\left(t_{5}\\right)\\,\\sin\\left(t_{6}\\right) & \\sin\\left(t_{5}\\right) & \\frac{171\\,\\sin\\left(t_{5}\\right)}{2000}+\\frac{23}{1000}\\\\ 0 & 0 & 0 & 1 \\end{array}\\right) \\]

    \u800c\u8fd9\u4e2a\u7ed3\u679c\u7b49\u4e8e\uff1a

    \\[ (T_1^0)^{-1}T = T_6^1 \\]

    \u56e0\u4e3aT\u662f\u5df2\u77e5\u7684\uff0c\u6211\u4eec\u53ef\u4ee5\u8ba1\u7b97\u51fa\u7b49\u5f0f\u7684\u5de6\u8fb9\uff1a

    \\[ (T_1^0)^{-1}T = \\left(\\begin{array}{cccc} \\mathrm{nx}\\,\\cos\\left(t_{1}\\right)+\\mathrm{ny}\\,\\sin\\left(t_{1}\\right) & \\mathrm{ox}\\,\\cos\\left(t_{1}\\right)+\\mathrm{oy}\\,\\sin\\left(t_{1}\\right) & \\mathrm{ax}\\,\\cos\\left(t_{1}\\right)+\\mathrm{ay}\\,\\sin\\left(t_{1}\\right) & \\mathrm{dx}\\,\\cos\\left(t_{1}\\right)+\\mathrm{dy}\\,\\sin\\left(t_{1}\\right)\\\\ -\\mathrm{nz} & -\\mathrm{oz} & -\\mathrm{az} & \\frac{23}{100}-\\mathrm{dz}\\\\ \\mathrm{ny}\\,\\cos\\left(t_{1}\\right)-\\mathrm{nx}\\,\\sin\\left(t_{1}\\right) & \\mathrm{oy}\\,\\cos\\left(t_{1}\\right)-\\mathrm{ox}\\,\\sin\\left(t_{1}\\right) & \\mathrm{ay}\\,\\cos\\left(t_{1}\\right)-\\mathrm{ax}\\,\\sin\\left(t_{1}\\right) & \\mathrm{dy}\\,\\cos\\left(t_{1}\\right)-\\mathrm{dx}\\,\\sin\\left(t_{1}\\right)\\\\ 0 & 0 & 0 & 1 \\end{array}\\right) \\]

    \u5bf9\u6bd4\u8fd9\u4e24\u4e2a\u77e9\u9635\u7684\u4e0d\u540c\u5f62\u5f0f\uff0c\u6ce8\u610f\u5230\u8fd9\u4e24\u4e2a\u77e9\u9635\u7b2c\u4e09\u884c\u7684\u540e\u9762\u4e24\u9879\uff0c\u5373

    \\[ \\left\\{ \\begin{align*} \\mathrm{ay}\\,\\cos\\left(t_{1}\\right)-\\mathrm{ax}\\,\\sin\\left(t_{1}\\right) &= \\sin\\left(t_{5}\\right)\\\\ \\mathrm{dy}\\,\\cos\\left(t_{1}\\right)-\\mathrm{dx}\\,\\sin\\left(t_{1}\\right) &= \\frac{171\\,\\sin\\left(t_{5}\\right)}{2000}+\\frac{23}{1000} \\end{align*} \\right. \\]

    \u6839\u636e\u8fd9\u4e2a\u65b9\u7a0b\u7ec4\uff0c\u6d88\u53bb\\(\\sin\\left(t_{5}\\right)\\)\uff0c\u53ef\u4ee5\u5f97\u5230\u5173\u4e8e\\(a_1\\)\u7684\u65b9\u7a0b\uff1a

    \\[ \\left(\\mathrm{dy} - 0.0855 \\mathrm{ay}\\right)\\cos\\left(t_{1}\\right) + \\left(0.0855 \\mathrm{ax} - \\mathrm{dx}\\right)\\sin\\left(a_{1}\\right) = 0.023 \\]

    \u4ece\u8fd9\u4e2a\u65b9\u7a0b\u53ef\u4ee5\u5f97\u5230

    \\[ t_1 = \\arctan2\\left(d_y, d_x\\right) - \\arctan2\\left(d_2, \\pm \\sqrt{d_x^2+d_y^2-d_2^2} \\right) \\]

    \u5176\u4e2d

    \\[ \\left\\{ \\begin{align*} d_x &= \\mathrm{dx} - 0.0855 \\mathrm{ax}\\\\ d_y &= \\mathrm{dy} - 0.0855 \\mathrm{ay}\\\\ d_2 &= 0.023 \\end{align*} \\right. \\]

    \u8fd9\u6837\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5f97\u5230\\(t_1\\)\u7684\u503c\u3002\u7136\u540e\uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u5230\\(t_5\\)\u7684\u503c\uff1a

    \\[ t_5 = \\arcsin\\left(\\mathrm{ay}\\,\\cos\\left(t_{1}\\right)-\\mathrm{ax}\\,\\sin\\left(t_{1}\\right) \\right) \uff08\\mathrm{ay}\\,\\cos\\left(t_{1}\\right)-\\mathrm{ax}\\,\\sin\\left(t_{1}\\right) \\leq 1) \\]

    \u5f97\u5230\u4e86\\(t_1\\)\u548c\\(t_5\\)\u7684\u503c\u4e4b\u540e\uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u5230\\(t_6\\)\u7684\u503c\uff0c\\(t_6\\)\u6ee1\u8db3\uff1a

    \\[ \\left\\{ \\begin{align*} \\cos\\left(t_{5}\\right)\\,\\cos\\left(t_{6}\\right) &= \\mathrm{ny}\\,\\cos\\left(t_{1}\\right)-\\mathrm{nx}\\,\\sin\\left(t_{1}\\right)\\\\ -\\cos\\left(t_{5}\\right)\\,\\sin\\left(t_{6}\\right) &= \\mathrm{oy}\\,\\cos\\left(t_{1}\\right)-\\mathrm{ox}\\,\\sin\\left(t_{1}\\right) \\end{align*} \\right. \\]

    \u6240\u4ee5\uff0c

    \\[ t_6 = \\arctan2\\left(\\mathrm{ox}\\,\\sin\\left(t_{1}\\right)-\\mathrm{oy}\\,\\cos\\left(t_{1}\\right), \\mathrm{ny}\\,\\cos\\left(t_{1}\\right)-\\mathrm{nx}\\,\\sin\\left(t_{1}\\right)\\right) \\]

    \u63a5\u4e0b\u6765\uff0c\u8ba9\u6211\u4eec\u4e00\u9f13\u4f5c\u6c14\uff0c\u6c42\u51fa\u5269\u4e0b\u7684\u503c\u3002\u56e0\u4e3a\\(t_1\\)\uff0c\\(t_5\\)\uff0c\\(t_6\\)\u5df2\u7ecf\u6c42\u51fa\uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u5230\uff1a

    \\[ T_4^1 = T_2^1T_3^2T_4^3 \\]

    \u5e26\u5165\u53d8\u6362\u77e9\u9635\uff0c\u53ef\u4ee5\u5f97\u5230\uff1a

    \\[ T_4^1 = \\left(\\begin{array}{cccc} \\cos\\left(t_{2}+t_{3}+t_{4}\\right) & 0 & \\sin\\left(t_{2}+t_{3}+t_{4}\\right) & \\frac{17\\,\\sin\\left(t_{2}+t_{3}\\right)}{100}+\\frac{37\\,\\sin\\left(t_{2}\\right)}{200}\\\\ \\sin\\left(t_{2}+t_{3}+t_{4}\\right) & 0 & -\\cos\\left(t_{2}+t_{3}+t_{4}\\right) & -\\frac{17\\,\\cos\\left(t_{2}+t_{3}\\right)}{100}-\\frac{37\\,\\cos\\left(t_{2}\\right)}{200}\\\\ 0 & 1 & 0 & \\frac{23}{1000}\\\\ 0 & 0 & 0 & 1 \\end{array}\\right) \\]

    \u800c\u548c\u4e0a\u9762\u7c7b\u4f3c\uff0c\u8fd9\u4e2a\u5f0f\u5b50\u8fd8\u7b49\u4e8e\uff1a

    \\[ (T_1^0)^{-1}T(T_6^5)^{-1}(T_5^4)^{-1} = T_4^1 \\]

    \u8fd9\u4e2a\\(T_4^1\\)\u4e2d\u7684\u6bcf\u4e00\u4e2a\u503c\u6211\u4eec\u90fd\u662f\u5df2\u77e5\u7684\uff0c\u5341\u5206\u590d\u6742\uff0c\u8fd9\u91cc\u4e0d\u5217\u51fa\u5b83\u7684\u5177\u4f53\u5f62\u5f0f\uff0c\u6240\u4ee5\u53ea\u77e5\u9053\u8fd9\u4e2a\u503c\u80fd\u7b97\u5c31\u884c\u4e86\u3002

    \u8fd9\u4e2a\u4e1c\u897f\u80fd\u7b97\uff0c\u6211\u4eec\u89c2\u5bdf\u7b2c\u4e00\u4e2a\\(T_4^1\\)\u516c\u5f0f\u7684\u7b2c\u4e00\u884c\u7684\u7b2c\u56db\u5217\u548c\u7b2c\u4e8c\u884c\u7684\u7b2c\u56db\u5217\uff0c\u611f\u89c9\u597d\u50cf\u80fd\u89e3\u3002

    \u6240\u4ee5\u5c31\u4ee3\u5165\u8fc7\u6765\uff1a

    \\[ \\left\\{ \\begin{align*} \\frac{17\\,\\sin\\left(t_{2}+t_{3}\\right)}{100}+\\frac{37\\,\\sin\\left(t_{2}\\right)}{200} &= \\mathrm{dx}\\,\\cos\\left(t_{1}\\right)-\\frac{171\\,\\mathrm{ax}\\,\\cos\\left(t_{1}\\right)}{2000}-\\frac{171\\,\\mathrm{ay}\\,\\sin\\left(t_{1}\\right)}{2000}+\\mathrm{dy}\\,\\sin\\left(t_{1}\\right)-\\frac{77\\,\\mathrm{ox}\\,\\cos\\left(t_{1}\\right)\\,\\cos\\left(t_{6}\\right)}{1000}-\\frac{77\\,\\mathrm{nx}\\,\\cos\\left(t_{1}\\right)\\,\\sin\\left(t_{6}\\right)}{1000}-\\frac{77\\,\\mathrm{oy}\\,\\cos\\left(t_{6}\\right)\\,\\sin\\left(t_{1}\\right)}{1000}-\\frac{77\\,\\mathrm{ny}\\,\\sin\\left(t_{1}\\right)\\,\\sin\\left(t_{6}\\right)}{1000}\\\\ -\\frac{17\\,\\cos\\left(t_{2}+t_{3}\\right)}{100}-\\frac{37\\,\\cos\\left(t_{2}\\right)}{200} &= \\frac{171\\,\\mathrm{az}}{2000}-\\mathrm{dz}+\\frac{77\\,\\mathrm{oz}\\,\\cos\\left(t_{6}\\right)}{1000}+\\frac{77\\,\\mathrm{nz}\\,\\sin\\left(t_{6}\\right)}{1000}+\\frac{23}{100} \\end{align*} \\right. \\]

    \u8fd9\u4e2a\u5f0f\u5b50\u53f3\u8fb9\u7684\u9879\u6765\u81ea\u90a3\u4e2a\u975e\u5e38\u975e\u5e38\u590d\u6742\u7684\u5f0f\u5b50\uff0c\u4f46\u597d\u5728\u901a\u8fc7\u524d\u9762\u7684\u5206\u6790\u6211\u4eec\u662f\u77e5\u9053\u5b83\u7684\u503c\u7684\u3002

    \u6ce8\u610f\u5230\uff0c\u5f0f\u5b50\u5de6\u8fb9\u5e73\u65b9\u76f8\u52a0\u4e4b\u540e\u7684\u7ed3\u679c\u662f\uff1a

    \\[ {C_{1}}^2+2\\,\\cos\\left(t_{3}\\right)\\,C_{1}\\,C_{2}+{C_{2}}^2 \\]

    \u6240\u4ee5\u6211\u4eec\u5728\u8fd9\u91cc\u5c31\u80fd\u6c42\u51fa\\(t_3\\)\u7684\u503c\uff0c\u5373

    \\[ t_3 = \\pm \\arccos\\left(\\frac{A_1^2 + A_2^2 - C_1^2 - C_2^2}{2\\,C_{1}\\,C_{2}}\\right) \\]

    \u5176\u4e2d

    \\[ \\left\\{ \\begin{align*} A_1 &= \\mathrm{dx}\\,\\cos\\left(t_{1}\\right)-\\frac{171\\,\\mathrm{ax}\\,\\cos\\left(t_{1}\\right)}{2000}-\\frac{171\\,\\mathrm{ay}\\,\\sin\\left(t_{1}\\right)}{2000}+\\mathrm{dy}\\,\\sin\\left(t_{1}\\right)-\\frac{77\\,\\mathrm{ox}\\,\\cos\\left(t_{1}\\right)\\,\\cos\\left(t_{6}\\right)}{1000}-\\frac{77\\,\\mathrm{nx}\\,\\cos\\left(t_{1}\\right)\\,\\sin\\left(t_{6}\\right)}{1000}-\\frac{77\\,\\mathrm{oy}\\,\\cos\\left(t_{6}\\right)\\,\\sin\\left(t_{1}\\right)}{1000}-\\frac{77\\,\\mathrm{ny}\\,\\sin\\left(t_{1}\\right)\\,\\sin\\left(t_{6}\\right)}{1000}\\\\ A_2 &= -\\frac{171\\,\\mathrm{az}}{2000}+\\mathrm{dz}-\\frac{77\\,\\mathrm{oz}\\,\\cos\\left(t_{6}\\right)}{1000}-\\frac{77\\,\\mathrm{nz}\\,\\sin\\left(t_{6}\\right)}{1000}-\\frac{23}{100} \\end{align*} \\right. \\]

    \u8fd9\u6837\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5f97\u5230\\(t_3\\)\u7684\u503c\u3002\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u5230\\(t_2\\)\u7684\u503c\uff0c\u8fd9\u4e2a\u503c\u4ece\u4e0a\u9762\u90a3\u4e2a\u77e9\u9635\u7684\u7b2c\u4e00\u884c\u7684\u7b2c\u4e09\u5217\u5c31\u80fd\u7684\u51fa\u6765.\u3002

    \\[ \\left(C_1 \\cos(t_3) + C_2 \\right) \\sin(t_2) + C_1 \\sin(t_3) \\cos(t_2) = A_1 \\]

    \u89e3\u5f97

    \\[ t_2 = \\arctan2\\left(d_y, d_x\\right) - \\arctan2\\left(d_2, \\pm \\sqrt{d_x^2+d_y^2-d_2^2} \\right) \\]

    \u5176\u4e2d

    \\[ \\left\\{ \\begin{align*} d_x &= -\\left(C_1 \\cos(t_3) + C_2 \\right)\\\\ d_y &= C_1 \\sin(t_3)\\\\ d_2 &= A_1\\\\ C_1&=0.170, C_2=0.185 \\end{align*} \\right. \\]

    \u8fd9\u6837\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5f97\u5230\\(t_2\\)\u7684\u503c\u3002\u6700\u540e\uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u5230\\(t_4\\)\u7684\u503c\uff0c\u8fd9\u4e2a\u503c\u4ece\u4e0a\u9762\u90a3\u4e2a\\(T_4^1\\)\u7684\u7b2c\u4e00\u884c\u7b2c\u4e00\u5217\u548c\u7b2c\u4e8c\u884c\u7b2c\u4e8c\u5217\u7684\u6bd4\u503c\u5c31\u80fd\u6c42\u51fa\u6765\uff0c\u663e\u800c\u6613\u89c1\uff1a

    \\[ \\left\\{ \\begin{align*} \\cos\\left(t_2+t_3+t_4\\right) &= \\mathrm{ax}\\,\\cos\\left(t_{1}\\right)\\,\\cos\\left(t_{5}\\right)+\\mathrm{ay}\\,\\cos\\left(t_{5}\\right)\\,\\sin\\left(t_{1}\\right)-\\mathrm{nx}\\,\\cos\\left(t_{1}\\right)\\,\\cos\\left(t_{6}\\right)\\,\\sin\\left(t_{5}\\right)-\\mathrm{ny}\\,\\cos\\left(t_{6}\\right)\\,\\sin\\left(t_{1}\\right)\\,\\sin\\left(t_{5}\\right)+\\mathrm{ox}\\,\\cos\\left(t_{1}\\right)\\,\\sin\\left(t_{5}\\right)\\,\\sin\\left(t_{6}\\right)+\\mathrm{oy}\\,\\sin\\left(t_{1}\\right)\\,\\sin\\left(t_{5}\\right)\\,\\sin\\left(t_{6}\\right)\\\\ \\sin\\left(t_2+t_3+t_4\\right) &= \\mathrm{nz}\\,\\cos\\left(t_{6}\\right)\\,\\sin\\left(t_{5}\\right)-\\mathrm{az}\\,\\cos\\left(t_{5}\\right)-\\mathrm{oz}\\,\\sin\\left(t_{5}\\right)\\,\\sin\\left(t_{6}\\right) \\end{align*} \\right. \\] \\[ t_4 = \\arctan2\\left(\\sin\\left(t_2+t_3+t_4\\right), \\cos\\left(t_2+t_3+t_4\\right)\\right) - t_2 - t_3 \\]

    \u81f3\u6b64\uff0c\u6211\u4eec\u5df2\u7ecf\u6c42\u51fa\u4e86\u9006\u8fd0\u52a8\u5b66\u7684\u89e3\u6790\u89e3\u3002

    "},{"location":"Notes/%E6%9C%BA%E5%99%A8%E4%BA%BA%E6%8A%80%E6%9C%AF%E4%B8%8E%E5%AE%9E%E8%B7%B5/lab4/#\u6e90\u4ee3\u7801","title":"\u6e90\u4ee3\u7801","text":"
    import numpy as np\nfrom math import cos, sin, atan2, sqrt, asin, acos, pi\n\nclass solution:\n    def __init__(self, theta):\n        locations = theta[:3]\n        thetas = theta[3:]\n        t1, t2, t3 = thetas[0], thetas[1], thetas[2]\n\n\n        self.T = np.zeros((4,4))\n\n        self.T[0, 3] = locations[0]\n        self.T[1, 3] = locations[1]\n        self.T[2, 3] = locations[2]\n\n        self.T[0, 0] = cos(t2) * cos(t3)\n        self.T[0, 1] = -cos(t2) * sin(t3)\n        self.T[0, 2] = sin(t2)\n\n        self.T[1, 0] = sin(t1) * sin(t2) * cos(t3) + cos(t1) * sin(t3)\n        self.T[1, 1] = -sin(t1) * sin(t2) * sin(t3) + cos(t1) * cos(t3)\n        self.T[1, 2] = -sin(t1) * cos(t2)\n\n        self.T[2, 0] = -cos(t1) * sin(t2) * cos(t3) + sin(t1) * sin(t3)\n        self.T[2, 1] = cos(t1) * sin(t2) * sin(t3) + sin(t1) * cos(t3)\n        self.T[2, 2] = cos(t1) * cos(t2)\n\n        self.nx, self.ny, self.nz = self.T[0, 0], self.T[1, 0], self.T[2, 0]\n        self.ox, self.oy, self.oz = self.T[0, 1], self.T[1, 1], self.T[2, 1]\n        self.ax, self.ay, self.az = self.T[0, 2], self.T[1, 2], self.T[2, 2]\n        self.dx, self.dy, self.dz = self.T[0, 3], self.T[1, 3], self.T[2, 3]\n\n    def IK(self):\n        t1 = self._cal_t1()\n        t5 = self._cal_t5(t1=t1)\n        t6 = self._cal_t6(t1=t1)\n        t3 = self._cal_t3(t1=t1, t6=t6)\n        t2 = self._cal_t2(t1=t1, t3=t3, t6=t6)\n        t4 = self._cal_t4(t1=t1, t2=t2, t3=t3, t5=t5, t6=t6)\n        return [t1, t2, t3, t4 , t5, t6]\n\n    def _cal_t1(self):\n        dx = self.dx - 0.0855 * self.ax\n        dy = self.dy - 0.0855 * self.ay\n        d2 = 0.023\n        dt = sqrt(dx * dx + dy * dy - d2 * d2)\n        t = np.zeros(2)\n        t[0] = atan2(dy, dx) - atan2(d2, dt)\n        t[1] = atan2(dy, dx) - atan2(d2, -dt)\n        return t[0]\n\n    def _cal_t5(self, t1):\n\n        ay = self.ay\n        ax = self.ax\n\n        return asin(ay * cos(t1) - ax * sin(t1))\n\n    def _cal_t6(self, t1):\n        ox = self.ox\n        oy = self.oy\n        nx = self.nx\n        ny = self.ny\n        return atan2(ox * sin(t1) - oy * cos(t1), ny * cos(t1) - nx * sin(t1))\n\n    def _cal_t3(self, t1, t6):\n\n        dx = self.dx\n        dy = self.dy\n        ax = self.ax\n        ay = self.ay\n        ox = self.ox\n        nx = self.nx\n        oy = self.oy\n        ny = self.ny\n\n        az = self.az\n        dz = self.dz\n        oz = self.oz\n        nz = self.nz\n\n        C1 = 17/100\n        C2 = 37/200\n\n        A1 = (dx * cos(t1) - 0.0855 * ax * cos(t1) - 0.0855 * ay * sin(t1)\n              + dy * sin(t1) \n              - 0.077 * ox * cos(t1) * cos(t6)\n              - 0.077 * nx * cos(t1) * sin(t6) \n              - 0.077 * oy * sin(t1) * cos(t6)\n              - 0.077 * ny * sin(t1) * sin(t6)\n              )\n\n        A2 = (-171 * az /2000 + dz - 77 * oz * cos(t6) / 1000 \n              - 77 * nz * sin(t6) / 1000 - 0.23)\n\n        t3 = -acos((A1 * A1 + A2 * A2 - C1 * C1 - C2 * C2) / (2 * C1 * C2))\n        return t3\n\n    def _cal_t2(self, t1, t3, t6):\n\n        dx = self.dx\n        dy = self.dy\n        ax = self.ax\n        ay = self.ay\n        ox = self.ox\n        nx = self.nx\n        oy = self.oy\n        ny = self.ny\n        A1 = (dx * cos(t1) - 171 * ax * cos(t1) / 2000 - 171 * ay * sin(t1) /2000\n              + dy * sin(t1) \n              - 77 * ox * cos(t1) * cos(t6) / 1000\n              - 77 * nx * cos(t1) * sin(t6) / 1000\n              - 77 * oy * sin(t1) * cos(t6) / 1000\n              - 77 * ny * sin(t1) * sin(t6) / 1000\n              )\n        C1 = 17/100\n        C2 = 37/200\n\n        dx = -(C1 * cos(t3) + C2)\n        dy = C1 * sin(t3)\n        d2 = A1\n\n        dt = sqrt(dx * dx + dy * dy - d2 * d2)\n        t = np.zeros(2)\n        t[0] = atan2(dy, dx) - atan2(d2, dt)\n        t[1] = atan2(dy, dx) - atan2(d2, -dt)\n\n        return t[0]\n\n    def _cal_t4(self, t1, t5, t2, t3, t6):\n        ax = self.ax\n        ay = self.ay\n        az = self.az\n        nx = self.nx\n        ny = self.ny\n        ox = self.ox\n        oy = self.oy\n        nz = self.nz\n        oz = self.oz\n        c234 = (ax * cos(t1) * cos(t5) + \n                ay * cos(t5) * sin(t1) -\n                nx * cos(t1) * sin(t5) * cos(t6) -\n                ny * cos(t6) * sin(t1) * sin(t5) +\n                ox * cos(t1) * sin(t5) * sin(t6) +\n                oy * sin(t1) * sin(t5) * sin(t6))\n        s234 = (nz * cos(t6) * sin(t5) - az * cos(t5) -\n                oz * sin(t5) * sin(t6))\n        t4 = atan2(s234, c234) - t2 - t3\n        return t4\n\nif __name__ == '__main__':\n\n    end_effector_pose = [[0.117, 0.334, 0.499, -2.019, -0.058, -2.190],\n                         [-0.066, 0.339, 0.444, -2.618, -0.524, -3.141],\n                         [0.3, 0.25, 0.26, -2.64, 0.59, -2.35],\n                         [0.42, 0, 0.36, 3.14, 1, -1.57],\n                         [0.32, -0.25, 0.16, 3, 0.265, -0.84]]\n\n    Solver = solution(end_effector_pose[4])\n\n    result = Solver.IK()\n\n    print(result)\n
    "},{"location":"Notes/%E6%9C%BA%E5%99%A8%E4%BA%BA%E6%8A%80%E6%9C%AF%E4%B8%8E%E5%AE%9E%E8%B7%B5/lab4/#\u9a8c\u8bc1\u7ed3\u679c","title":"\u9a8c\u8bc1\u7ed3\u679c","text":"

    \u8981\u6c42\u4ee3\u5165\u5982\u4e0b\u51e0\u7ec4\u7684\u6570\u636e\u5b9e\u9a8c\u5e76\u8bb0\u5f55\u7ed3\u679c\uff1a

    \u5e8f\u53f7 \\(x\\) \\(y\\) \\(z\\) \\(\\phi\\) \\(\\theta\\) \\(\\psi\\) 1 0.117 0.334 0.499 -2.019 -0.058 -2.190 2 -0.066 0.339 0.444 -2.618 -0.524 -3.141 3 0.3 0.25 0.26 -2.64 0.59 -2.35 4 0.42 0 0.36 3.14 1 -1.57 5 0.32 -0.25 0.16 3 0.265 -0.84

    \u4ee3\u5165\u6211\u4eec\u7684\u7a0b\u5e8f\uff0c\u5f97\u5230\u7ed3\u679c\u5982\u4e0b\uff1a

    \u5e8f\u53f7 \\(\\theta_1\\) \\(\\theta_2\\) \\(\\theta_3\\) \\(\\theta_4\\) \\(\\theta_5\\) \\(\\theta_6\\) 1 1.0469159881245618 -3.6848268488640077 -0.5314544325246965 4.739457934996882 0.523908606235766 0.6985405717445783 2 1.5715257919759826 -3.602109744046789 -0.6608338908729985 5.309782428345745 0.5236351560106807 0.0013221366719161028 3 0.638109037379833 -3.9315902306928483 -1.3432621283836084 6.091162835543736 -0.010496018243560683 0.010128409252622487 4 -0.06591845703403737 -3.9689490669809517 -0.8245292249247629 5.365232265305782 0.054596781589503346 -0.0361945809572239 5 -0.7356518980607447 -4.176588341280122 -1.0532070322734461 6.510149968753879 0.07485626641182383 -0.01280542967480542

    \u5c06\u4ee5\u4e0a\u7684\u70b9\u4ee3\u5165\u4eff\u771f\u7a0b\u5e8f\uff0c\u53ef\u4ee5\u5f97\u5230\u4e0e\u672b\u7aef\u4f4d\u59ff\u76f8\u540c\u7684\u7ed3\u679c:

    \u4eff\u771f\u7ed3\u679c1\uff1a

    [0.11699999999999991, 0.33399999999999985, 0.020422614535513077, -2.019, -0.05800000000000007, -2.19]

    \u4eff\u771f\u7ed3\u679c2\uff1a

    [-0.06600000000000003, 0.33899999999999997, -0.03517289232717361, -2.6180000000000003, -0.5239999999999999, -3.141]

    \u4eff\u771f\u7ed3\u679c3\uff1a

    [0.3, 0.25000000000000006, 0.18088897246534913, -2.640000000000001, 0.589999999999999, -2.349999999999999]

    \u4eff\u771f\u7ed3\u679c4\uff1a

    [0.42000000000000004, 1.680513367352532e-17, 0.1371152126509033, 3.14, 1.0000000000000004, -1.5]

    \u4eff\u771f\u7ed3\u679c5\uff1a

    [0.31999999999999995, -0.25, 0.1599999999999998, 3.0, 0.265, -0.8399999999999997]

    \u8bf4\u660e\u6211\u4eec\u7684\u7a0b\u5e8f\u662f\u6b63\u786e\u7684\u3002

    "},{"location":"Tech/conda%26pip/","title":"Conda\u548cpip\u7a76\u7adf\u6709\u4ec0\u4e48\u533a\u522b\u548c\u8054\u7cfb","text":"

    \u7701\u6d41\u7248

    \u63a8\u8350\u53ea\u7528conda\u521b\u5efa\u865a\u62df\u73af\u5883\uff0c\u800c\u4f7f\u7528pip\u5b89\u88c5\u9700\u8981\u7684\u5305\u3002

    "},{"location":"Tech/conda%26pip/#\u4ec0\u4e48\u662f\u865a\u62df\u73af\u5883","title":"\u4ec0\u4e48\u662f\u865a\u62df\u73af\u5883","text":"

    \u6839\u636epython\u7684\u5b98\u65b9\u6587\u4ef6\uff1a

    \u201c\u865a\u62df\u73af\u5883\u662f\u4e00\u4e2a Python \u73af\u5883\uff0c\u8fd9\u6837\u5b89\u88c5\u5728\u5176\u4e2d\u7684 Python \u89e3\u91ca\u5668\u3001\u5e93\u548c\u811a\u672c\u5c31\u4e0e\u5b89\u88c5\u5728\u5176\u5b83\u865a\u62df\u73af\u5883\u4e2d\u7684\u3001\u4ee5\u53ca\uff08\u9ed8\u8ba4\uff09\u5b89\u88c5\u5728\u201c\u7cfb\u7edf\u201d Python\uff08\u4e5f\u5c31\u662f\u4f5c\u4e3a\u64cd\u4f5c\u7cfb\u7edf\u7684\u4e00\u90e8\u5206\u5b89\u88c5\u7684\u5e93\uff09\u4e2d\u7684\u4efb\u4f55\u5e93\u9694\u79bb\u3002

    \u865a\u62df\u73af\u5883\u7684\u539f\u7406\uff1a

    "},{"location":"Tech/conda%26pip/#conda-install-\u548c-pip-install-\u7684\u533a\u522b","title":"conda install \u548c pip install \u7684\u533a\u522b","text":"

    \u5b89\u88c5\u7684\u76ee\u5f55\u4e0d\u4e00\u6837\uff0c\u7b80\u800c\u8a00\u4e4b\uff0c\u5c31\u662fconda install\u7684\u5305\u662f\u5b89\u88c5\u5728\u4e00\u4e2a\u7edf\u4e00\u7684\u76ee\u5f55\u4e0b\u9762\u7684\uff0c\u5bf9\u6240\u6709\u7684\u73af\u5883\u90fd\u53ef\u89c1\u3002\u4f46\u662fpip install\u53ea\u4f1a\u5b89\u88c5\u5728\u5f53\u524d\u7684\u865a\u62df\u73af\u5883\u76ee\u5f55\uff0c\u6240\u4ee5pip install\u66f4\u52a0\u8d34\u5408\u6211\u4eec\u5bf9\u865a\u62df\u73af\u5883\u672c\u8eab\u7684\u9700\u6c42\u3002

    "},{"location":"Tech/%E5%9C%A8%E6%82%A8%E7%9A%84%E4%B8%AA%E4%BA%BA%E5%8D%9A%E5%AE%A2%E4%B8%AD%E6%B7%BB%E5%8A%A0pdf%E6%96%87%E4%BB%B6/","title":"\u5982\u4f55\u5728mkdocs\u535a\u5ba2\u4e2d\u63d2\u5165pdf\u6587\u4ef6","text":"

    \u770b\u4e86\u5f88\u591a\u65b9\u6cd5\uff0c\u73b0\u5728\u5c06\u4e2a\u4eba\u89c9\u5f97\u6700\u7b80\u5355\u7684\u4e00\u79cd\u653e\u5728\u4e4b\u7c7b\u3002

    \u9996\u5148\u5b89\u88c5extension\uff1a

    pip install pymdown-extensions\n

    \u968f\u540e\u4fee\u6539\u60a8\u7684mkdocs.yml\u6587\u4ef6\uff0c\u60a8\u9700\u8981\u5728\u60a8\u7684markdown_extensions\u90e8\u5206\u52a0\u4e0a\u8fd9\u4e2a\u63d2\u4ef6\u5e76\u5305\u542b\u5b83\u7684\u914d\u7f6e\uff1a

    markdown_extensions:\n  - abbr\n  # ...some extensions\n  - pymdownx.pathconverter:\n      base_path: '' # default: ''\n      relative_path: '' # default ''\n      absolute: false # default: false\n      tags: 'a script img link object embed'\n

    \u8fd9\u56db\u4e2a\u914d\u7f6e\u5176\u5b9e\u8fd8\u662f\u5f88\u76f4\u89c2\u7684\uff0c\u63a5\u4e0b\u6765\u8bf4\u600e\u4e48\u5728\u60a8\u7684\u6587\u6863\u4e2d\u52a0\u5165pdf\u63d2\u4ef6\u5e76\u5b9e\u73b0\u7f51\u9875\u7aef\u7684\u5728\u7ebf\u9884\u89c8\uff0c\u6548\u679c\u5982\u56fe\u6240\u793a\uff1a

    \u4e3a\u4e86\u5b9e\u73b0\u8fd9\u4e2a\u5176\u5b9e\u662f\u5f88\u7b80\u5355\u7684\uff0c\u60a8\u53ea\u9700\u8981\u5728\u60a8\u7684markdown\u4e2d\u52a0\u4e0a\uff1a

    <iframe src=\"Path2YourFile\" width=\"100%\" height=\"600px\" style=\"border: none;\">\nThis browser does not support PDFs\n</iframe>\n

    \u6839\u636e\u914d\u7f6e\uff0c\u8fd9\u91cc\u7684src\u91c7\u7528\u76f8\u5bf9\u8def\u5f84\uff0c\u6839\u76ee\u5f55\u662f\u5f53\u524d\u7f16\u8f91\u7684markdown\u6587\u4ef6\u6240\u5728\u76ee\u5f55\u3002

    \u5047\u5982\u6211\u7684markdown\u6587\u4ef6\u5728docs/markdown/test.md\uff0c\u800c\u6211\u60f3\u8981\u63d2\u7684\u6587\u4ef6\u5728docs/files/insert.pdf\uff0c\u5c31\u5728src\u5199../files/insert.pdf\u3002

    \u5982\u679c\u80fd\u5e2e\u5230\u60a8\u7684\u8bdd\u6211\u5f88\u5f00\u5fc3\uff0c\u6709\u4ec0\u4e48\u95ee\u9898\u6b22\u8fce\u5728issue\u4e2d\u63d0\u51fa\u6216\u8005\u7ed9\u6211\u53d1\u90ae\u4ef6~~

    "}]} \ No newline at end of file diff --git a/sitemap.xml b/sitemap.xml index 324ca0e..2c7a432 100755 --- a/sitemap.xml +++ b/sitemap.xml @@ -44,10 +44,6 @@ https://chenxukwok.github.io/mkdocs-site/Notes/%E6%9C%BA%E5%99%A8%E4%BA%BA%E6%8A%80%E6%9C%AF%E4%B8%8E%E5%AE%9E%E8%B7%B5/lab4/ 2024-10-20 - - https://chenxukwok.github.io/mkdocs-site/Tech/CTC/ - 2024-10-20 - https://chenxukwok.github.io/mkdocs-site/Tech/conda%26pip/ 2024-10-20 diff --git a/sitemap.xml.gz b/sitemap.xml.gz index c5ab507..a7fa74f 100755 Binary files a/sitemap.xml.gz and b/sitemap.xml.gz differ