-
Notifications
You must be signed in to change notification settings - Fork 0
/
data.py
413 lines (384 loc) · 16.5 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import os
import torch
import dill
import gzip
from nltk import sent_tokenize
class convertvocab(object):
def __init__(self, load_from, save_to):
self.dictionary = Dictionary()
self.loadme = self.load_dict(load_from)
self.save_to = self.save_dict(save_to)
def save_dict(self, path):
with open(path, 'wb') as f:
torch.save(self.dictionary, f, pickle_module=dill)
def load_dict(self, path):
assert os.path.exists(path)
with open(path, 'r') as f:
for line in f:
self.dictionary.add_word(line.strip())
class Dictionary(object):
def __init__(self):
self.word2idx = {}
self.tag2idx = {}
self.idx2tag = []
self.idx2word = []
def add_word(self, word):
if word not in self.word2idx:
self.idx2word.append(word)
self.word2idx[word] = len(self.idx2word) - 1
return self.word2idx[word]
def add_tag(self, tag):
if tag not in self.tag2idx:
self.idx2tag.append(tag)
self.tag2idx[tag] = len(self.idx2tag) - 1
return self.tag2idx[tag]
def __len__(self):
return len(self.idx2word)
class SentenceCorpus(object):
def __init__(self, lm_path, ccg_path=None, save_to='lm_data.bin', testflag=False,
trainfname='train.txt',
validfname='valid.txt',
testfname='test.txt'):
if not testflag:
self.dictionary = Dictionary()
self.train_lm = self.tokenize(os.path.join(lm_path, trainfname))
self.valid_lm = self.tokenize_with_unks(os.path.join(lm_path, validfname))
if ccg_path:
self.train_ccg = self.tokenize_ccg(os.path.join(ccg_path, trainfname))
self.valid_ccg = self.tokenize_ccg(os.path.join(ccg_path, validfname))
else:
self.train_ccg = self.valid_ccg = None
self.save_to = self.save_dict(save_to)
else:
self.dictionary = self.load_dict(save_to)
self.test_lm = self.sent_tokenize_with_unks(os.path.join(lm_path, testfname))
if ccg_path:
self.test_ccg = self.sent_tokenize_ccg_with_unks(os.path.join(ccg_path, testfname))
else:
self.test_ccg = None
def save_dict(self, path):
with open(path, 'wb') as f:
torch.save(self.dictionary, f, pickle_module=dill)
def load_dict(self, path):
assert os.path.exists(path)
with open(path, 'rb') as f:
fdata = torch.load(f, pickle_module=dill)
if type(fdata) == type(()):
# compatibility with old pytorch LM saving
return(fdata[3])
return(fdata)
def tokenize_ccg(self, path):
"""Tokenizes and gets CCG tags for a text file."""
assert os.path.exists(path)
# Add words and tags to the dictionary
with open(path, 'r') as f:
tokens = 0
FIRST = True
for line in f:
if line.strip() != "":
(word, tag) = line.strip().split("\t")
if FIRST:
self.dictionary.add_word("<eos>")
self.dictionary.add_tag("<EOS>")
tokens += 1
FIRST = False
self.dictionary.add_word(word)
self.dictionary.add_tag(tag)
tokens += 1
if word == '.':
FIRST = True
self.dictionary.add_word("<eos>")
self.dictionary.add_tag("<EOS>")
tokens += 1
# Tokenize file content
with open(path, 'r') as f:
word_ids = torch.LongTensor(tokens)
tag_ids = torch.LongTensor(tokens)
token = 0
FIRST = True
for line in f:
if line.strip() != "":
if FIRST:
word_ids[token] = self.dictionary.word2idx["<eos>"]
tag_ids[token] = self.dictionary.tag2idx["<EOS>"]
token += 1
FIRST = False
(word, tag) = line.strip().split("\t")
word_ids[token] = self.dictionary.word2idx[word]
tag_ids[token] = self.dictionary.tag2idx[tag]
token += 1
if word == ".":
word_ids[token] = self.dictionary.word2idx["<eos>"]
tag_ids[token] = self.dictionary.tag2idx["<EOS>"]
token += 1
FIRST = True
return word_ids, tag_ids
def tokenize_ccg_with_unks(self, path):
"""Tokenizes and gets CCG tags for a text file."""
assert os.path.exists(path)
# Add words and tags to the dictionary
with open(path, 'r') as f:
tokens = 0
FIRST = True
for line in f:
if line.strip() != "":
(word, tag) = line.strip().split("\t")
if FIRST:
tokens += 1
FIRST = False
tokens += 1
if word == '.':
FIRST = True
tokens += 1
# Tokenize file content
with open(path, 'r') as f:
word_ids = torch.LongTensor(tokens)
tag_ids = torch.LongTensor(tokens)
token = 0
FIRST = True
for line in f:
if line.strip() != "":
if FIRST:
word_ids[token] = self.dictionary.word2idx["<eos>"]
tag_ids[token] = self.dictionary.tag2idx["<EOS>"]
token += 1
FIRST = False
(word, tag) = line.strip().split("\t")
if word not in self.dictionary.word2idx:
word_ids[token] = self.dictionary.add_word["<unk>"]
else:
word_ids[token] = self.dictionary.word2idx[word]
if tag not in self.dictionary.tag2idx:
tag_ids[token] = self.dictionary.add_tag["<UNK>"]
else:
tag_ids[token] = self.dictionary.tag2idx[tag]
token += 1
if word == ".":
word_ids[token] = self.dictionary.word2idx["<eos>"]
tag_ids[token] = self.dictionary.tag2idx["<EOS>"]
token += 1
FIRST = True
return word_ids, tag_ids
def sent_tokenize_ccg_with_unks(self, path):
"""Tokenizes and gets CCG tags for a text file."""
assert os.path.exists(path)
sents = []
# Add words and tags to the dictionary
with open(path, 'r') as f:
tokens = 0
FIRST = True
for line in f:
if line.strip() != "":
(word, tag) = line.strip().split("\t")
if FIRST:
tokens += 1
FIRST = False
tokens += 1
if word == '.':
FIRST = True
tokens += 1
# Tokenize file content
with open(path, 'r') as f:
word_ids = torch.LongTensor(tokens)
tag_ids = torch.LongTensor(tokens)
token = 0
sent = []
FIRST = True
for line in f:
if line.strip() != "":
if FIRST:
word_ids[token] = self.dictionary.word2idx["<eos>"]
tag_ids[token] = self.dictionary.tag2idx["<EOS>"]
token += 1
FIRST = False
sent.append(("<eos>", "<EOS>"))
(word, tag) = line.strip().split("\t")
sent.append((word, tag))
if word not in self.dictionary.word2idx:
word_ids[token] = self.dictionary.add_word["<unk>"]
else:
word_ids[token] = self.dictionary.word2idx[word]
if tag not in self.dictionary.tag2idx:
tag_ids[token] = self.dictionary.add_tag["<UNK>"]
else:
tag_ids[token] = self.dictionary.tag2idx[tag]
token += 1
if word == ".":
word_ids[token] = self.dictionary.word2idx["<eos>"]
tag_ids[token] = self.dictionary.tag2idx["<EOS>"]
token += 1
FIRST = True
sent.append(("<eos>", "<EOS>"))
sents.append(sent)
sent = []
return sents, word_ids, tag_ids
def tokenize(self, path):
"""Tokenizes a text file."""
assert os.path.exists(path)
# Add words to the dictionary
if path[-2:] == 'gz':
with gzip.open(path, 'rb') as f:
tokens = 0
FIRST = True
for fchunk in f.readlines():
for line in sent_tokenize(fchunk.decode("utf-8")):
if FIRST:
words = ['<eos>'] + line.split() + ['<eos>']
FIRST = False
else:
words = line.split() + ['<eos>']
tokens += len(words)
for word in words:
self.dictionary.add_word(word)
# Tokenize file content
with gzip.open(path, 'rb') as f:
ids = torch.LongTensor(tokens)
token = 0
FIRST = True
for fchunk in f.readlines():
for line in sent_tokenize(fchunk.decode("utf-8")):
if FIRST:
words = ['<eos>'] + line.split() + ['<eos>']
FIRST = False
else:
words = line.split() + ['<eos>']
for word in words:
ids[token] = self.dictionary.word2idx[word]
token += 1
else:
with open(path, 'r') as f:
tokens = 0
FIRST = True
for fchunk in f:
#print fchunk
for line in sent_tokenize(fchunk.decode("utf-8")):
if FIRST:
words = ['<eos>'] + line.split() + ['<eos>']
FIRST = False
else:
words = line.split() + ['<eos>']
tokens += len(words)
for word in words:
self.dictionary.add_word(word)
# Tokenize file content
with open(path, 'r') as f:
ids = torch.LongTensor(tokens)
token = 0
FIRST = True
for fchunk in f:
for line in sent_tokenize(fchunk.decode("utf-8")):
if FIRST:
words = ['<eos>'] + line.split() + ['<eos>']
FIRST = False
else:
words = line.split() + ['<eos>']
for word in words:
ids[token] = self.dictionary.word2idx[word]
token += 1
return ids
def tokenize_with_unks(self, path):
"""Tokenizes a text file, adding unks if needed."""
assert os.path.exists(path)
if path[-2:] == 'gz':
# Add words to the dictionary
with gzip.open(path, 'rb') as f:
tokens = 0
FIRST = True
for fchunk in f.readlines():
for line in sent_tokenize(fchunk.decode("utf-8")):
if FIRST:
words = ['<eos>'] + line.split() + ['<eos>']
FIRST = False
else:
words = line.split() + ['<eos>']
tokens += len(words)
# Tokenize file content
with gzip.open(path, 'rb') as f:
ids = torch.LongTensor(tokens)
token = 0
FIRST = True
for fchunk in f.readlines():
for line in sent_tokenize(fchunk.decode("utf-8")):
if FIRST:
words = ['<eos>'] + line.split() + ['<eos>']
FIRST = False
else:
words = line.split() + ['<eos>']
for word in words:
if word not in self.dictionary.word2idx:
ids[token] = self.dictionary.add_word("<unk>")
else:
ids[token] = self.dictionary.word2idx[word]
token += 1
else:
# Add words to the dictionary
with open(path, 'r') as f:
tokens = 0
FIRST = True
for fchunk in f:
for line in sent_tokenize(fchunk.decode("utf-8")):
if FIRST:
words = ['<eos>'] + line.split() + ['<eos>']
FIRST = False
else:
words = line.split() + ['<eos>']
tokens += len(words)
# Tokenize file content
with open(path, 'r') as f:
ids = torch.LongTensor(tokens)
token = 0
FIRST = True
for fchunk in f:
for line in sent_tokenize(fchunk.decode("utf-8")):
if FIRST:
words = ['<eos>'] + line.split() + ['<eos>']
FIRST = False
else:
words = line.split() + ['<eos>']
for word in words:
if word not in self.dictionary.word2idx:
ids[token] = self.dictionary.add_word("<unk>")
else:
ids[token] = self.dictionary.word2idx[word]
token += 1
return ids
def sent_tokenize_with_unks(self, path):
"""Tokenizes a text file into sentences, adding unks if needed."""
assert os.path.exists(path)
all_ids = []
sents = []
if path [-2:] == 'gz':
with gzip.open(path, 'rb') as f:
for fchunk in f.readlines():
for line in sent_tokenize(fchunk.decode("utf-8")):
sents.append(line.strip())
words = ['<eos>'] + line.split() + ['<eos>']
tokens = len(words)
# tokenize file content
ids = torch.LongTensor(tokens)
token = 0
for word in words:
if word not in self.dictionary.word2idx:
ids[token] = self.dictionary.add_word("<unk>")
else:
ids[token] = self.dictionary.word2idx[word]
token += 1
all_ids.append(ids)
else:
with open(path, 'r') as f:
for fchunk in f:
for line in sent_tokenize(fchunk):
sents.append(line.strip())
words = ['<eos>'] + line.split() + ['<eos>']
tokens = len(words)
# tokenize file content
ids = torch.LongTensor(tokens)
token = 0
for word in words:
if word not in self.dictionary.word2idx:
ids[token] = self.dictionary.add_word("<unk>")
else:
ids[token] = self.dictionary.word2idx[word]
token += 1
all_ids.append(ids)
return (sents, all_ids)