Skip to content

Latest commit

 

History

History
983 lines (789 loc) · 41.9 KB

api_doc_en.md

File metadata and controls

983 lines (789 loc) · 41.9 KB

Introduction

Fooocus API are provided more than a dozen REST interfaces now, I roughly divide it into two categories, the first is the ability to call Fooocus, such as generating images, refreshing models, and so on, and the second is related to Fooocus API itself, mainly related to task queries. I will try to illustrate their role and usage and provide examples in the following content.

Almost all interface parameters have default values, which means you only need to send the parameters you are interested in. The complete parameters and default values can be viewed in the table.

Fooocus capability related interfaces

text-to-image

Corresponding to the function of text to image in Fooocus

base info:

EndPoint: /v1/generation/text-to-image
Method: Post
DataType: json

requests params:

Name Type Description
prompt string prompt, default to empty string
negative_prompt string negative_prompt
style_selections List[str] list of style, must be supported style, you can get all supported style here
performance_selection Enum performance_selection, must be one of Speed, Quality, Extreme Speed default to Speed
aspect_ratios_selection str resolution, default to 1152*896
image_number int the num of image to generate, default to 1 , max num is 32, note: Not a parallel interface
image_seed int seed, default to -1, meant random
sharpness float sharpness, default to 2.0 , 0-30
guidance_scale float guidance scale, default to 4.0 , 1-30
base_model_name str base model, default to juggernautXL_version6Rundiffusion.safetensors
refiner_model_name str refiner model, default to None
refiner_switch float refiner switch, default to 0.5
loras List[Lora] lora list, include conf, lora: Lora
advanced_params AdvancedParams Advanced params, AdvancedParams
require_base64 bool require base64, default to False
save_meta bool save metadata to image, default True
meta_scheme str metadata scheme, default 'fooocus', only support 'fooocus' now
save_extension str extension for saved image, default 'png'
save_name str image name saved, default job_id + seq
read_wildcards_in_order bool read wildcards in order, default False
async_process bool is async, default to False
webhook_url str after async task completed, address for callback, default to None, refer to webhook

response params:

Most response have the same structure, but different parts will be specifically explained

This interface returns a universal response structure, refer to response

request example:

host = "http://127.0.0.1:8888"

def text2img(params: dict) -> dict:
    """
    text to image
    """
    result = requests.post(url=f"{host}/v1/generation/text-to-image",
                           data=json.dumps(params),
                           headers={"Content-Type": "application/json"})
    return result.json()

result =text2img({
    "prompt": "1girl sitting on the ground",
    "async_process": True})
print(result)

image-upscale-vary

Corresponding to the function of Upscale or Variation in Fooocus

the requests body for this interface based on text-to-image, so I will only list the difference with text-to-image

In addition, the interface provides two versions, and there is no functional difference between the two versions, mainly due to slight differences in request methods

base info:

EndPoint_V1: /v1/generation/image-upscale-vary
EndPoint_V2: /v2/generation/image-upscale-vary
Method: Post
DataType: form|json

V1

requests params

Name Type Description
input_image string($binary) binary image
uov_method Enum 'Vary (Subtle)','Vary (Strong)','Upscale (1.5x)','Upscale (2x)','Upscale (Fast 2x)','Upscale (Custom)'
upscale_value float default to None , 1.0-5.0, magnification, only for uov_method is 'Upscale (Custom)'
style_selections List[str] list Fooocus style seg with comma
loras str(List[Lora]) list for lora, with configure, lora: Lora, example: [{"model_name": "sd_xl_offset_example-lora_1.0.safetensors", "weight": 0.5}]
advanced_params str(AdvancedParams) AdvancedParams, AdvancedParams: AdvancedParams, send with str, None is available

response params:

This interface returns a universal response structure, refer to response

requests example:

# headers should not contain {"Content-Type": "application/json"}

host = "http://127.0.0.1:8888"
image = open("./examples/imgs/bear.jpg", "rb").read()

def upscale_vary(image, params: dict) -> dict:
    """
    Upscale or Vary
    """
    response = requests.post(url=f"{host}/v1/generation/image-upscale-vary",
                        data=params,
                        files={"input_image": image})
    return response.json()

result =upscale_vary(image=image,
                     params={
                         "uov_method": "Upscale (2x)",
                         "async_process": True
                     })
print(json.dumps(result, indent=4, ensure_ascii=False))

V2

requests params

Name Type Description
uov_method UpscaleOrVaryMethod Enum type, value should one of 'Vary (Subtle)','Vary (Strong)','Upscale (1.5x)','Upscale (2x)','Upscale (Fast 2x)','Upscale (Custom)'
upscale_value float default to None , 1.0-5.0, magnification, only for uov_method is 'Upscale (Custom)'
input_image str input image, base64 str, or a URL

response params:

This interface returns a universal response structure, refer to response

requests params:

host = "http://127.0.0.1:8888"
image = open("./examples/imgs/bear.jpg", "rb").read()

def upscale_vary(image, params: dict) -> dict:
    """
    Upscale or Vary
    """
    params["input_image"] = base64.b64encode(image).decode('utf-8') 
    response = requests.post(url=f"{host}/v2/generation/image-upscale-vary",
                        data=json.dumps(params),
                        headers={"Content-Type": "application/json"},
                        timeout=300)
    return response.json()

result =upscale_vary(image=image,
                     params={
                         "uov_method": "Upscale (2x)",
                         "async_process": True
                     })
print(json.dumps(result, indent=4, ensure_ascii=False))

image-inpaint-outpaint

base info:

EndPoint_V1: /v1/generation/image-inpaint-outpaint
EndPoint_V2: /v2/generation/image-inpaint-outpaint
Method: Post
DataType: form|json

V1

requests params

Name Type Description
input_image string($binary) binary image
input_mask string($binary) binary image
inpaint_additional_prompt string additional_prompt
outpaint_selections str Image extension direction , 'Left', 'Right', 'Top', 'Bottom' seg with comma
outpaint_distance_left int Image extension distance, default to 0
outpaint_distance_right int Image extension distance, default to 0
outpaint_distance_top int Image extension distance, default to 0
outpaint_distance_bottom int Image extension distance, default to 0
style_selections List[str] list Fooocus style seg with comma
loras str(List[Lora]) list for lora, with configure, lora: Lora, example: [{"model_name": "sd_xl_offset_example-lora_1.0.safetensors", "weight": 0.5}]
advanced_params str(AdvancedParams) AdvancedParams, AdvancedParams: AdvancedParams, send with str, None is available

response params:

This interface returns a universal response structure, refer to response

requests example:

# example for inpaint outpaint v1
host = "http://127.0.0.1:8888"
image = open("./examples/imgs/bear.jpg", "rb").read()

def inpaint_outpaint(params: dict, input_image: bytes, input_mask: bytes = None) -> dict:
    """
    example for inpaint outpaint v1
    """
    response = requests.post(url=f"{host}/v1/generation/image-inpaint-outpaint",
                        data=params,
                        files={"input_image": input_image,
                               "input_mask": input_mask})
    return response.json()

# image extension example
result = inpaint_outpaint(params={
                            "outpaint_selections": "Left,Right",
                            "async_process": True},
                          input_image=image,
                          input_mask=None)
print(json.dumps(result, indent=4, ensure_ascii=False))

# image inpaint example
source = open("./examples/imgs/s.jpg", "rb").read()
mask = open("./examples/imgs/m.png", "rb").read()
result = inpaint_outpaint(params={
                            "prompt": "a cat",
                            "async_process": True},
                          input_image=source,
                          input_mask=mask)
print(json.dumps(result, indent=4, ensure_ascii=False))

V2

requests params

Name Type Description
input_image str input image, base64 str, or a URL
input_mask str input mask, base64 str, or a URL
inpaint_additional_prompt str additional prompt
outpaint_selections List[OutpaintExpansion] OutpaintExpansion is Enum, value should one of "Left", "Right", "Top", "Bottom"
outpaint_distance_left int Image extension distance, default to 0
outpaint_distance_right int Image extension distance, default to 0
outpaint_distance_top int Image extension distance, default to 0
outpaint_distance_bottom int Image extension distance, default to 0

response params:

This interface returns a universal response structure, refer to responseresponse params

requests example:

# example for inpaint outpaint v2
host = "http://127.0.0.1:8888"
image = open("./examples/imgs/bear.jpg", "rb").read()

def inpaint_outpaint(params: dict) -> dict:
    """
    example for inpaint outpaint v2
    """
    response = requests.post(url=f"{host}/v2/generation/image-inpaint-outpaint",
                        data=json.dumps(params),
                        headers={"Content-Type": "application/json"})
    return response.json()

# image extension example
result = inpaint_outpaint(params={
                            "input_image": base64.b64encode(image).decode('utf-8'),
                            "input_mask": None,
                            "outpaint_selections": ["Left", "Right"],
                            "async_process": True})
print(json.dumps(result, indent=4, ensure_ascii=False))

# image inpaint example
source = open("./examples/imgs/s.jpg", "rb").read()
mask = open("./examples/imgs/m.png", "rb").read()
result = inpaint_outpaint(params={
                            "prompt": "a cat",
                            "input_image": base64.b64encode(source).decode('utf-8'),
                            "input_mask": base64.b64encode(mask).decode('utf-8'),
                            "async_process": True})
print(json.dumps(result, indent=4, ensure_ascii=False))

image-prompt

v0.3.27 has a break change. Interface based on change to inpaint-outpaint

after v0.3.27, this interface implements the functions of inpaint_outpaint and image-prompt.

Multi-function interface, which does not implement the functions of inpaint_outpaint and image-prompt at the same time in the same request

base info:

EndPoint_V1: /v1/generation/image-prompt
EndPoint_V2: /v2/generation/image-prompt
Method: Post
DataType: form|json

V1

requests params

Name Type Description
input_image Bytes binary image, use for inpaint
input_mask Bytes binary image mask, use for inpaint
inpaint_additional_prompt str inpaint additional prompt
outpaint_selections str Image extension direction , 'Left', 'Right', 'Top', 'Bottom' seg with comma
outpaint_distance_left int Image extension distance, default to 0
outpaint_distance_right int Image extension distance, default to 0
outpaint_distance_top int Image extension distance, default to 0
outpaint_distance_bottom int Image extension distance, default to 0
cn_img1 string($binary) binary image
cn_stop1 float default to 0.6
cn_weight1 float default to 0.6
cn_type1 Enum should one of "ImagePrompt", "FaceSwap", "PyraCanny", "CPDS"
cn_img2 string($binary) binary image
cn_stop2 float default to 0.6
cn_weight2 float default to 0.6
cn_type2 Enum should one of "ImagePrompt", "FaceSwap", "PyraCanny", "CPDS"
cn_img3 string($binary) binary image
cn_stop3 float default to 0.6
cn_weight3 float default to 0.6
cn_type3 Enum should one of "ImagePrompt", "FaceSwap", "PyraCanny", "CPDS"
cn_img4 string($binary) binary image
cn_stop4 float default to 0.6
cn_weight4 float default to 0.6
cn_type4 Enum should one of "ImagePrompt", "FaceSwap", "PyraCanny", "CPDS"
style_selections List[str] list Fooocus style seg with comma
loras str(List[Lora]) list for lora, with configure, lora: Lora, example: [{"model_name": "sd_xl_offset_example-lora_1.0.safetensors", "weight": 0.5}]
advanced_params str(AdvancedParams) AdvancedParams, AdvancedParams: AdvancedParams, send with str, None is available

response params:

This interface returns a universal response structure, refer to responseresponse params

requests example:

# image_prompt v1 example
host = "http://127.0.0.1:8888"
image = open("./examples/imgs/bear.jpg", "rb").read()
source = open("./examples/imgs/s.jpg", "rb").read()
mask = open("./examples/imgs/m.png", "rb").read()

def image_prompt(params: dict,
                 input_image: bytes=None,
                 input_mask: bytes=None,
                 cn_img1: bytes=None,
                 cn_img2: bytes=None,
                 cn_img3: bytes=None,
                 cn_img4: bytes=None,) -> dict:
    """
    image prompt
    """
    response = requests.post(url=f"{host}/v1/generation/image-prompt",
                             data=params,
                             files={
                                 "input_image": input_image,
                                 "input_mask": input_mask,
                                 "cn_img1": cn_img1,
                                 "cn_img2": cn_img2,
                                 "cn_img3": cn_img3,
                                 "cn_img4": cn_img4,
                              })
    return response.json()

# image extend
params = {
    "outpaint_selections": ["Left", "Right"],
    "image_prompts": [] # required, can be empty list
}
result = image_prompt(params=params, input_image=image)
print(json.dumps(result, indent=4, ensure_ascii=False))

# inpaint

params = {
    "prompt": "1girl sitting on the chair",
    "image_prompts": [], # required, can be empty list
    "async_process": True
}
result = image_prompt(params=params, input_image=source, input_mask=mask)
print(json.dumps(result, indent=4, ensure_ascii=False))

# image prompt

params = {
    "prompt": "1girl sitting on the chair",
    "image_prompts": [
        {
            "cn_stop": 0.6,
            "cn_weight": 0.6,
            "cn_type": "ImagePrompt"
        },{
            "cn_stop": 0.6,
            "cn_weight": 0.6,
            "cn_type": "ImagePrompt"
        }]
    }
result = image_prompt(params=params, cn_img1=image, cn_img2=source)
print(json.dumps(result, indent=4, ensure_ascii=False))

V2

requests params

Name Type Description
input_image str base64 image, or a URL, use for inpaint
input_mask str base64 image mask, or a URL, use for inpaint
inpaint_additional_prompt str inpaint additional prompt
outpaint_selections List[] Image extension direction , 'Left', 'Right', 'Top', 'Bottom' seg with comma
outpaint_distance_left int Image extension distance, default to 0
outpaint_distance_right int Image extension distance, default to 0
outpaint_distance_top int Image extension distance, default to 0
outpaint_distance_bottom int Image extension distance, default to 0
image_prompts List[ImagePrompt] image list, include config, ImagePrompt struct:

ImagePrompt

Name Type Description
cn_img str input image, base64 str, or a URL
cn_stop float 0-1, default to 0.5
cn_weight float weight, 0-2, default to 1.0
cn_type ControlNetType ControlNetType Enum, should one of "ImagePrompt", "FaceSwap", "PyraCanny", "CPDS"

response params:

This interface returns a universal response structure, refer to responseresponse params

requests example:

# image_prompt v2 example
host = "http://127.0.0.1:8888"
image = open("./examples/imgs/bear.jpg", "rb").read()
source = open("./examples/imgs/s.jpg", "rb").read()
mask = open("./examples/imgs/m.png", "rb").read()

def image_prompt(params: dict) -> dict:
    """
    image prompt
    """
    response = requests.post(url=f"{host}/v2/generation/image-prompt",
                             data=json.dumps(params),
                             headers={"Content-Type": "application/json"})
    return response.json()

# image extend
params = {
    "input_image": base64.b64encode(image).decode('utf-8'),
    "outpaint_selections": ["Left", "Right"],
    "image_prompts": [] # required, can be empty list
}
result = image_prompt(params)
print(json.dumps(result, indent=4, ensure_ascii=False))

# inpaint

params = {
    "prompt": "1girl sitting on the chair",
    "input_image": base64.b64encode(source).decode('utf-8'),
    "input_mask": base64.b64encode(mask).decode('utf-8'),
    "image_prompts": [], # required, can be empty list
    "async_process": True
}
result = image_prompt(params)
print(json.dumps(result, indent=4, ensure_ascii=False))

# image prompt

params = {
    "prompt": "1girl sitting on the chair",
    "image_prompts": [
        {
            "cn_img": base64.b64encode(source).decode('utf-8'),
            "cn_stop": 0.6,
            "cn_weight": 0.6,
            "cn_type": "ImagePrompt"
        },{
            "cn_img": base64.b64encode(image).decode('utf-8'),
            "cn_stop": 0.6,
            "cn_weight": 0.6,
            "cn_type": "ImagePrompt"
        }]
    }
result = image_prompt(params)
print(json.dumps(result, indent=4, ensure_ascii=False))

text to image with image prompt

this interface only provides v2 version

base info:

EndPoint: /v2/generation/text-to-image-with-ip
Method: Post
DataType: json

requests params

Name Type Description
image_prompts List[ImagePrompt] Image list

requests example:

# text to image with image prompt example
host = "http://127.0.0.1:8888"
image = open("./examples/imgs/bear.jpg", "rb").read()
source = open("./examples/imgs/s.jpg", "rb").read()
def image_prompt(params: dict) -> dict:
    """
    image prompt
    """
    response = requests.post(url=f"{host}/v2/generation/text-to-image-with-ip",
                             data=json.dumps(params),
                             headers={"Content-Type": "application/json"})
    return response.json()

params = {
    "prompt": "A bear",
    "image_prompts": [
        {
            "cn_img": base64.b64encode(source).decode('utf-8'),
            "cn_stop": 0.6,
            "cn_weight": 0.6,
            "cn_type": "ImagePrompt"
        },{
            "cn_img": base64.b64encode(image).decode('utf-8'),
            "cn_stop": 0.6,
            "cn_weight": 0.6,
            "cn_type": "ImagePrompt"
        }
    ]
}
result = image_prompt(params)
print(json.dumps(result, indent=4, ensure_ascii=False))

describe

base info:

EndPoint: /v1/tools/describe-image
Method: Post
DataType: form

requests params

Name Type Description
type Enum type, should be one of "Photo", "Anime"

requests example:

def describe_image(image: bytes,
                   params: dict = {"type": "Photo"}) -> dict:
    """
    describe-image
    """
    response = requests.post(url="http://127.0.0.1:8888/v1/tools/describe-image",
                        params=params,
                        files={
                            "image": image
                        },
                        timeout=30)
    return response.json()

response example:

{
  "describe": "a young woman posing with her hands behind her head"
}

all-models

base info:

EndPoint: /v1/engines/all-models
Method: Get

requests example:

def all_models() -> dict:
    """
    all-models
    """
    response = requests.get(url="http://127.0.0.1:8888/v1/engines/all-models",
                        timeout=30)
    return response.json()

response params:

{
  "model_filenames": [
    "juggernautXL_version6Rundiffusion.safetensors",
    "sd_xl_base_1.0_0.9vae.safetensors",
    "sd_xl_refiner_1.0_0.9vae.safetensors"
  ],
  "lora_filenames": [
    "sd_xl_offset_example-lora_1.0.safetensors"
  ]
}

refresh-models

base info:

EndPoint: /v1/engines/refresh-models
Method: Post

Removed, use all-models instead

requests example

def refresh() -> dict:
    """
    refresh-models
    """
    response = requests.post(url="http://127.0.0.1:8888/v1/engines/refresh-models",
                        timeout=30)
    return response.json()

response params

{
  "model_filenames": [
    "juggernautXL_version6Rundiffusion.safetensors",
    "sd_xl_base_1.0_0.9vae.safetensors",
    "sd_xl_refiner_1.0_0.9vae.safetensors"
  ],
  "lora_filenames": [
    "sd_xl_offset_example-lora_1.0.safetensors"
  ]
}

styles

base info:

EndPoint: /v1/engines/styles
Method: Get

requests example:

def styles() -> dict:
    """
    styles
    """
    response = requests.get(url="http://127.0.0.1:8888/v1/engines/styles",
                        timeout=30)
    return response.json()

response params:

[
  "Fooocus V2",
  "Fooocus Enhance",
  ...
  "Watercolor 2",
  "Whimsical And Playful"
]

Fooocus API task related interfaces

job-queue

base info:

EndPoint: /v1/engines/job-queue
Method: Get

requests example:

def job_queue() -> dict:
    """
    job-queue
    """
    response = requests.get(url="http://127.0.0.1:8888/v1/generation/job-queue",
                        timeout=30)
    return response.json()

response params:

{
  "running_size": 0,
  "finished_size": 1,
  "last_job_id": "cac3914a-926d-4b6f-a46a-83794a0ce1d4"
}

query-job

base info:

EndPoint: /v1/generation/query-job
Method: Get

requests example:

def taskResult(task_id: str) -> dict:
    # get task status
    task_status = requests.get(url="http://127.0.0.1:8888/v1/generation/query-job",
                               params={"job_id": task_id,
                                       "require_step_preview": False},
                               timeout=30)

    return task_status.json()

response params:

{
  "job_id": "cac3914a-926d-4b6f-a46a-83794a0ce1d4",
  "job_type": "Text to Image",
  "job_stage": "SUCCESS",
  "job_progress": 100,
  "job_status": "Finished",
  "job_step_preview": null,
  "job_result": [
    {
      "base64": null,
      "url": "http://127.0.0.1:8888/files/2023-11-27/b928e50e-3c09-4187-a3f9-1c12280bfd95.png",
      "seed": 8228839561385006000,
      "finish_reason": "SUCCESS"
    }
  ]
}

job-history

base info:

EndPoint: /v1/generation/job-history
Method: get

requests example:

def job-history() -> dict:
    """
    job-history
    """
    response = requests.get(url="http://127.0.0.1:8888/v1/generation/job-history",
                        timeout=30)
    return response.json()

response params:

{
  "queue": [],
  "history": [
    "job_id": "cac3914a-926d-4b6f-a46a-83794a0ce1d4",
    "is_finished": True
  ]
}

stop

base info:

EndPoint: /v1/generation/stop
Method: post

requests example:

def stop() -> dict:
    """
    stop
    """
    response = requests.post(url="http://127.0.0.1:8888/v1/generation/stop",
                        timeout=30)
    return response.json()

response params:

{
  "msg": "success"
}

ping

base info:

EndPoint: /ping
Method: get

pong

webhook

You can specify an address through '--webhook_url' on the command line so that you can receive notifications after asynchronous tasks are completed

Here is a simple example to demonstrate how 'webhook' works

First,start a simple server using the following code:

from fastapi import FastAPI
import uvicorn

app = FastAPI()

@app.post("/status")
async def status(requests: dict):
    print(requests)

uvicorn.run(app, host="0.0.0.0", port=8000)

Then, start Fooocus API with --webhook-url http://host:8000/status

Submit a task in any way, and after completion, you will see the task completion information in the background of this simple server:

{'job_id': '717ec0b5-85df-4174-80d6-bddf93cd8248', 'job_result': [{'url': 'http://127.0.0.1:8888/files/2023-12-29/f1eca704-718e-4781-9d5f-82d41aa799d7.png', 'seed': '3283449865282320931'}]}

public requests params

AdvanceParams

Name Type Description
disable_preview bool disable preview, default to False
adm_scaler_positive float ADM Guidance Scaler, default to 1.5, range 0.1-3.0
adm_scaler_negative float negative ADM Guidance Scaler, default to 0.8, range 0.1-3.0
adm_scaler_end float ADM Guidance Scaler end value, default to 0.5, range 0.0-1.0
refiner_swap_method str refiner model swap method, default to joint
adaptive_cfg float CFG Mimicking from TSNR, default to 7.0, range 1.0-30.0
sampler_name str sampler, default to default_sampler
scheduler_name str scheduler, default to default_scheduler
overwrite_step int Forced Overwrite of Sampling Step, default to -1, range -1-200
overwrite_switch int Forced Overwrite of Refiner Switch Step, default to -1, range -1-200
overwrite_width int Forced Overwrite of Generating Width, default to -1, range -1-2048
overwrite_height int Forced Overwrite of Generating Height, default to -1, range -1-2048
overwrite_vary_strength float Forced Overwrite of Denoising Strength of "Vary", default to -1, range -1-1.0
overwrite_upscale_strength float Forced Overwrite of Denoising Strength of "Upscale", default to -1, range -1-1.0
mixing_image_prompt_and_vary_upscale bool Mixing Image Prompt and Vary/Upscale, default to False
mixing_image_prompt_and_inpaint bool Mixing Image Prompt and Inpaint, default to False
debugging_cn_preprocessor bool Debug Preprocessors, default to False
skipping_cn_preprocessor bool Skip Preprocessors, default to False
controlnet_softness float Softness of ControlNet, default to 0.25, range 0.0-1.0
canny_low_threshold int Canny Low Threshold, default to 64, range 1-255
canny_high_threshold int Canny High Threshold, default to 128, range 1-255
freeu_enabled bool FreeU enabled, default to False
freeu_b1 float FreeU B1, default to 1.01
freeu_b2 float FreeU B2, default to 1.02
freeu_s1 float FreeU B3, default to 0.99
freeu_s2 float FreeU B4, default to 0.95
debugging_inpaint_preprocessor bool Debug Inpaint Preprocessing, default to False
inpaint_disable_initial_latent bool Disable initial latent in inpaint, default to False
inpaint_engine str Inpaint Engine, default to v2.6
inpaint_strength float Inpaint Denoising Strength, default to 1.0, range 0.0-1.0
inpaint_respective_field float Inpaint Respective Field, default to 1.0, range 0.0-1.0
inpaint_mask_upload_checkbox bool upload mask, default False
invert_mask_checkbox bool revert mask, default False
inpaint_erode_or_dilate int Mask Erode or Dilate, default 0, -64-64

lora

Name Type Description
enabled bool enable lora
model_name str model name
weight float weight, default to 0.5

response

success response:

async_process: True

Name Type Description
job_id int job ID
job_type str job type
job_stage str job stage
job_progress float job progress
job_status str job status
job_step_preview str job preview
job_result str job result

async_process: False

Name Type Description
base64 str base64 image, according to require_base64 params determines whether it is null
url str result image url
seed int image seed
finish_reason str finish reason

fail response: