-
Notifications
You must be signed in to change notification settings - Fork 19
/
validate.py
161 lines (131 loc) · 6.2 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Adopted from: https://github.com/allenai/elastic/blob/master/multilabel_classify.py
# special thanks to @hellbell
import argparse
import time
import torch
import torch.nn.parallel
import torch.optim
import torch.utils.data.distributed
import torchvision.transforms as transforms
import os
from src.helper_functions.helper_functions import mAP, AverageMeter, CocoDetection
from src.models import create_model
import numpy as np
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR', help='path to dataset')
parser.add_argument('--model-name', default='tresnet_l')
parser.add_argument('--model-path', default='./TRresNet_L_448_86.6.pth', type=str)
parser.add_argument('--num-classes', default=80)
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
help='number of data loading workers (default: 16)')
parser.add_argument('--image-size', default=448, type=int,
metavar='N', help='input image size (default: 448)')
parser.add_argument('--thre', default=0.8, type=float,
metavar='N', help='threshold value')
parser.add_argument('-b', '--batch-size', default=32, type=int,
metavar='N', help='mini-batch size (default: 16)')
parser.add_argument('--print-freq', '-p', default=64, type=int,
metavar='N', help='print frequency (default: 64)')
def main():
args = parser.parse_args()
args.batch_size = args.batch_size
# setup model
print('creating and loading the model...')
state = torch.load(args.model_path, map_location='cpu')
args.num_classes = state['num_classes']
args.do_bottleneck_head = False
model = create_model(args).cuda()
model.load_state_dict(state['model'], strict=True)
model.eval()
classes_list = np.array(list(state['idx_to_class'].values()))
print('done\n')
# Data loading code
normalize = transforms.Normalize(mean=[0, 0, 0],
std=[1, 1, 1])
instances_path = os.path.join(args.data, 'annotations/instances_val2014.json')
data_path = os.path.join(args.data, 'val2014')
val_dataset = CocoDetection(data_path,
instances_path,
transforms.Compose([
transforms.Resize((args.image_size, args.image_size)),
transforms.ToTensor(),
normalize,
]))
print("len(val_dataset)): ", len(val_dataset))
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
validate_multi(val_loader, model, args)
def validate_multi(val_loader, model, args):
print("starting actuall validation")
batch_time = AverageMeter()
prec = AverageMeter()
rec = AverageMeter()
mAP_meter = AverageMeter()
Sig = torch.nn.Sigmoid()
end = time.time()
tp, fp, fn, tn, count = 0, 0, 0, 0, 0
preds = []
targets = []
for i, (input, target) in enumerate(val_loader):
target = target
target = target.max(dim=1)[0]
# compute output
with torch.no_grad():
output = Sig(model(input.cuda())).cpu()
# for mAP calculation
preds.append(output.cpu())
targets.append(target.cpu())
# measure accuracy and record loss
pred = output.data.gt(args.thre).long()
tp += (pred + target).eq(2).sum(dim=0)
fp += (pred - target).eq(1).sum(dim=0)
fn += (pred - target).eq(-1).sum(dim=0)
tn += (pred + target).eq(0).sum(dim=0)
count += input.size(0)
this_tp = (pred + target).eq(2).sum()
this_fp = (pred - target).eq(1).sum()
this_fn = (pred - target).eq(-1).sum()
this_tn = (pred + target).eq(0).sum()
this_prec = this_tp.float() / (
this_tp + this_fp).float() * 100.0 if this_tp + this_fp != 0 else 0.0
this_rec = this_tp.float() / (
this_tp + this_fn).float() * 100.0 if this_tp + this_fn != 0 else 0.0
prec.update(float(this_prec), input.size(0))
rec.update(float(this_rec), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
p_c = [float(tp[i].float() / (tp[i] + fp[i]).float()) * 100.0 if tp[
i] > 0 else 0.0
for i in range(len(tp))]
r_c = [float(tp[i].float() / (tp[i] + fn[i]).float()) * 100.0 if tp[
i] > 0 else 0.0
for i in range(len(tp))]
f_c = [2 * p_c[i] * r_c[i] / (p_c[i] + r_c[i]) if tp[i] > 0 else 0.0 for
i in range(len(tp))]
mean_p_c = sum(p_c) / len(p_c)
mean_r_c = sum(r_c) / len(r_c)
mean_f_c = sum(f_c) / len(f_c)
p_o = tp.sum().float() / (tp + fp).sum().float() * 100.0
r_o = tp.sum().float() / (tp + fn).sum().float() * 100.0
f_o = 2 * p_o * r_o / (p_o + r_o)
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Precision {prec.val:.2f} ({prec.avg:.2f})\t'
'Recall {rec.val:.2f} ({rec.avg:.2f})'.format(
i, len(val_loader), batch_time=batch_time,
prec=prec, rec=rec))
print(
'P_C {:.2f} R_C {:.2f} F_C {:.2f} P_O {:.2f} R_O {:.2f} F_O {:.2f}'
.format(mean_p_c, mean_r_c, mean_f_c, p_o, r_o, f_o))
print(
'--------------------------------------------------------------------')
print(' * P_C {:.2f} R_C {:.2f} F_C {:.2f} P_O {:.2f} R_O {:.2f} F_O {:.2f}'
.format(mean_p_c, mean_r_c, mean_f_c, p_o, r_o, f_o))
mAP_score = mAP(torch.cat(targets).numpy(), torch.cat(preds).numpy())
print("mAP score:", mAP_score)
return
if __name__ == '__main__':
main()