forked from TARANG0503/DSA-Practice
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rat-in-the-maze.cpp
92 lines (84 loc) · 2.28 KB
/
rat-in-the-maze.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
// C++ program to solve Rat in a Maze problem using
// backtracking
#include <bits/stdc++.h>
using namespace std;
// Maze size
#define N 4
bool solveMazeUtil(int maze[N][N], int x, int y,int sol[N][N]);
// A utility function to print solution matrix sol[N][N]
void printSolution(int sol[N][N])
{
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++)
cout<<" "<<sol[i][j]<<" ";
cout<<endl;
}
}
// A utility function to check if x, y is valid index for
// N*N maze
bool isSafe(int maze[N][N], int x, int y)
{
// if (x, y outside maze) return false
if (x >= 0 && x < N && y >= 0 && y < N && maze[x][y] == 1)
return true;
return false;
}
// This function solves the Maze problem using Backtracking.
// It mainly uses solveMazeUtil() to solve the problem. It
// returns false if no path is possible, otherwise return
// true and prints the path in the form of 1s. Please note
// that there may be more than one solutions, this function
// prints one of the feasible solutions.
bool solveMaze(int maze[N][N])
{
int sol[N][N] = { { 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 } };
if (solveMazeUtil(maze, 0, 0, sol) == false) {
cout<<"Solution doesn't exist";
return false;
}
printSolution(sol);
return true;
}
// A recursive utility function to solve Maze problem
bool solveMazeUtil(int maze[N][N], int x, int y, int sol[N][N])
{
// if (x, y is goal) return true
if (x == N - 1 && y == N - 1 && maze[x][y] == 1) {
sol[x][y] = 1;
return true;
}
// Check if maze[x][y] is valid
if (isSafe(maze, x, y) == true) {
// Check if the current block is already part of
// solution path.
if (sol[x][y] == 1)
return false;
// mark x, y as part of solution path
sol[x][y] = 1;
/* Move forward in x direction */
if (solveMazeUtil(maze, x + 1, y, sol) == true)
return true;
// If moving in x direction doesn't give solution
// then Move down in y direction
if (solveMazeUtil(maze, x, y + 1, sol) == true)
return true;
// If none of the above movements work then
// BACKTRACK: unmark x, y as part of solution path
sol[x][y] = 0;
return false;
}
return false;
}
// driver program to test above function
int main()
{
int maze[N][N] = { { 1, 0, 0, 0 },
{ 1, 1, 0, 1 },
{ 0, 1, 0, 0 },
{ 1, 1, 1, 1 } };
solveMaze(maze);
return 0;
}