-
Notifications
You must be signed in to change notification settings - Fork 2
/
SimpleObfuscator.hpp
750 lines (725 loc) · 25.9 KB
/
SimpleObfuscator.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
#pragma once
#include <array>
#include <bit>
#include <cstdint>
#include <cstring>
#include <random>
#ifdef USE_BOOST
#include <boost/config/detail/suffix.hpp>
#define OBFUSCATOR_INLINE BOOST_FORCEINLINE
#else
#define OBFUSCATOR_INLINE inline
#endif
namespace SimpleObfuscator {
namespace Impl {
constexpr uint8_t SBox[16][16] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
};
constexpr uint8_t invSBox[16][16] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38,
0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,
0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d,
0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2,
0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,
0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a,
0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,
0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea,
0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85,
0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,
0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20,
0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31,
0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,
0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0,
0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26,
0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
};
enum { BlockSize = 16 };
typedef std::array<uint8_t, BlockSize> Block;
template <size_t N>
inline consteval Block padding(std::array<uint8_t, N> x) {
Block result{};
std::size_t index = 0;
for (auto& item : x) {
result[index] = std::move(item);
++index;
}
while (index < BlockSize) {
result[index] = 0;
++index;
}
return result;
}
inline constexpr Block xorBlock(Block x1, Block x2)
{
Block result{};
for (std::size_t i = 0; i < BlockSize; i++)
{
result[i] = static_cast<uint8_t>(x1[i] ^ x2[i]);
}
return result;
}
inline void xorBlockInplace(uint8_t* x1, Block x2)
{
for (std::size_t i = 0; i < BlockSize; i++)
x1[i] ^= x2[i];
}
template <size_t keyLength>
class parameters {
public:
enum { Nk = 0 };
enum { Nr = 0 };
};
template<>
class parameters<128> {
public:
enum { Nk = 4 };
enum { Nr = 10 };
};
template<>
class parameters<192> {
public:
enum { Nk = 6 };
enum { Nr = 12 };
};
template<>
class parameters<256> {
public:
enum { Nk = 8 };
enum { Nr = 14 };
};
using StatePart = std::array<uint8_t, 4>;
using State = std::array<StatePart, 4>;
using RoundKeyPart = Block;
template <size_t keyLength>
using RoundKey = std::array<RoundKeyPart, parameters<keyLength>::Nr + 1>;
inline consteval State AddRoundKey(State state, RoundKeyPart key)
{
State result{};
for (size_t i = 0; i < 4; i++) {
for (size_t j = 0; j < 4; j++)
{
result[i][j] = static_cast<uint8_t>(state[i][j] ^ key[i + 4 * j]);
}
}
return result;
}
inline void AddRoundKeyRuntime(State& state, RoundKeyPart key)
{
for (size_t i = 0; i < 4; i++) {
for (size_t j = 0; j < 4; j++)
{
state[i][j] = static_cast<uint8_t>(state[i][j] ^ key[i + 4 * j]);
}
}
}
inline consteval State SubBytes(State state)
{
State result{};
for (size_t i = 0; i < 4; i++)
{
for (size_t j = 0; j < 4; j++)
{
uint8_t t = state[i][j];
result[i][j] = SBox[t / 16][t % 16];
}
}
return result;
}
inline void InvSubBytes(State& state) {
for (size_t i = 0; i < 4; i++)
{
for (size_t j = 0; j < 4; j++)
{
uint8_t t = state[i][j];
state[i][j] = invSBox[t / 16][t % 16];
}
}
}
inline consteval StatePart ShiftRow(StatePart state, int n) // shift row i on n positions
{
StatePart result{};
for (size_t j = 0; j < 4; j++) {
result[j] = state[static_cast<size_t>((j + n) % 4)];
}
return result;
}
inline void ShiftRowRuntime(StatePart& state, int n) {
unsigned char tmp[4];
for (int j = 0; j < 4; j++) {
tmp[j] = state[static_cast<size_t>((j + n) % 4)];
}
memcpy(state.data(), tmp, 4 * sizeof(unsigned char));
}
inline void InvShiftRows(State& state)
{
ShiftRowRuntime(state[1], 4 - 1);
ShiftRowRuntime(state[2], 4 - 2);
ShiftRowRuntime(state[3], 4 - 3);
}
inline unsigned char mul_bytes(unsigned char a, unsigned char b) // multiplication a and b in galois field
{
unsigned char p = 0;
unsigned char high_bit_mask = 0x80;
unsigned char high_bit = 0;
unsigned char modulo = 0x1B; /* x^8 + x^4 + x^3 + x + 1 */
for (int i = 0; i < 8; i++) {
if (b & 1) {
p ^= a;
}
high_bit = static_cast<uint8_t>(a & high_bit_mask);
a <<= 1;
if (high_bit) {
a ^= modulo;
}
b >>= 1;
}
return p;
}
inline void InvMixColumns(State& state)
{
unsigned char s[4], s1[4];
for (size_t j = 0; j < 4; j++)
{
for (size_t i = 0; i < 4; i++)
{
s[i] = state[i][j];
}
s1[0] = static_cast<uint8_t>(mul_bytes(0x0e, s[0]) ^ mul_bytes(0x0b, s[1]) ^ mul_bytes(0x0d, s[2]) ^ mul_bytes(0x09, s[3]));
s1[1] = static_cast<uint8_t>(mul_bytes(0x09, s[0]) ^ mul_bytes(0x0e, s[1]) ^ mul_bytes(0x0b, s[2]) ^ mul_bytes(0x0d, s[3]));
s1[2] = static_cast<uint8_t>(mul_bytes(0x0d, s[0]) ^ mul_bytes(0x09, s[1]) ^ mul_bytes(0x0e, s[2]) ^ mul_bytes(0x0b, s[3]));
s1[3] = static_cast<uint8_t>(mul_bytes(0x0b, s[0]) ^ mul_bytes(0x0d, s[1]) ^ mul_bytes(0x09, s[2]) ^ mul_bytes(0x0e, s[3]));
for (size_t i = 0; i < 4; i++)
{
state[i][j] = s1[i];
}
}
}
inline consteval State ShiftRows(State states) {
State result{};
result[0] = states[0];
result[1] = ShiftRow(states[1], 1);
result[2] = ShiftRow(states[2], 2);
result[3] = ShiftRow(states[3], 3);
return result;
}
inline constexpr unsigned char xtime(unsigned char b)
{
return static_cast<uint8_t>((b << 1) ^ (((b >> 7) & 1) * 0x1b));
}
inline constexpr std::array<uint8_t, 4> MixSingleColumn(std::array<uint8_t, 4> r)
{
std::array<uint8_t, 4> result{};
std::array<uint8_t, 4> a;
std::array<uint8_t, 4> b;
uint8_t h;
for (size_t c = 0; c < 4; c++)
{
a[c] = r[c];
h = (unsigned char)((signed char)r[c] >> 7);
b[c] = static_cast<uint8_t>(r[c] << 1);
b[c] ^= 0x1B & h;
}
result[0] = static_cast<uint8_t>(b[0] ^ a[3] ^ a[2] ^ b[1] ^ a[1]); /* 2 * a0 + a3 + a2 + 3 * a1 */
result[1] = static_cast<uint8_t>(b[1] ^ a[0] ^ a[3] ^ b[2] ^ a[2]); /* 2 * a1 + a0 + a3 + 3 * a2 */
result[2] = static_cast<uint8_t>(b[2] ^ a[1] ^ a[0] ^ b[3] ^ a[3]); /* 2 * a2 + a1 + a0 + 3 * a3 */
result[3] = static_cast<uint8_t>(b[3] ^ a[2] ^ a[1] ^ b[0] ^ a[0]); /* 2 * a3 + a2 + a1 + 3 * a0 */
return result;
}
inline constexpr State MixColumns(State state)
{
State result{};
std::array<uint8_t, 4> temp;
for (size_t i = 0; i < 4; ++i)
{
for (size_t j = 0; j < 4; ++j)
{
temp[j] = state[j][i]; //place the current state column in temp
}
temp = MixSingleColumn(temp); //mix it using the wiki implementation
for (size_t j = 0; j < 4; ++j)
{
result[j][i] = temp[j]; //when the column is mixed, place it back into the state
}
}
return result;
}
template <size_t keyLength>
inline consteval Block encryptBlock(Block plain, RoundKey<keyLength> roundKeys) {
State state{};
Block result{};
for (size_t i = 0; i < 4; i++)
for (size_t j = 0; j < 4; j++)
state[i][j] = plain[i + j * 4];
state = AddRoundKey(state, roundKeys[0]);
for (size_t round = 1; round < parameters<keyLength>::Nr; round++)
{
state = SubBytes(state);
state = ShiftRows(state);
state = MixColumns(state);
state = AddRoundKey(state, roundKeys[round]);
}
state = SubBytes(state);
state = ShiftRows(state);
state = AddRoundKey(state, roundKeys[parameters<keyLength>::Nr]);
for (size_t i = 0; i < 4; i++)
for (size_t j = 0; j < 4; j++)
result[i + j * 4] = state[i][j];
return result;
}
template <size_t keyLength>
inline void DecryptBlock(Block crypted, RoundKey<keyLength> roundKeys, uint8_t* result)
{
State state{};
for (size_t i = 0; i < 4; i++)
{
for (size_t j = 0; j < 4; j++) {
state[i][j] = crypted[i + 4 * j];
}
}
AddRoundKeyRuntime(state, roundKeys[parameters<keyLength>::Nr]);
for (size_t round = parameters<keyLength>::Nr - 1; round >= 1; round--)
{
InvSubBytes(state);
InvShiftRows(state);
AddRoundKeyRuntime(state, roundKeys[round]);
InvMixColumns(state);
}
InvSubBytes(state);
InvShiftRows(state);
AddRoundKeyRuntime(state, roundKeys[0]);
for (size_t i = 0; i < 4; i++)
{
for (size_t j = 0; j < 4; j++) {
result[i + 4 * j] = state[i][j];
}
}
}
template <size_t keyLength>
using Key = std::array<uint8_t, 4 * parameters<keyLength>::Nk>;
inline consteval std::array<uint8_t, 4> RotWord(std::array<uint8_t, 4> x)
{
return std::array<uint8_t, 4>{x[1], x[2], x[3], x[0]};
}
inline consteval std::array<uint8_t, 4> SubWord(std::array<uint8_t, 4> x)
{
std::array<uint8_t, 4> result{};
for (size_t i = 0; i < 4; i++)
{
result[i] = SBox[x[i] / 16][x[i] % 16];
}
return result;
}
inline void RotWordInplace(std::array<uint8_t, 4>& x)
{
uint8_t tmp = x[0];
x[0] = x[1];
x[1] = x[2];
x[2] = x[3];
x[3] = tmp;
}
inline void SubWordInplace(std::array<uint8_t, 4>& x)
{
for (size_t i = 0; i < 4; i++)
x[i] = SBox[x[i] / 16][x[i] % 16];
}
inline consteval std::array<uint8_t, 4> XorWords(std::array<uint8_t, 4>a, std::array<uint8_t, 4>b)
{
std::array<uint8_t, 4> result{};
for (size_t i = 0; i < 4; i++)
{
result[i] = static_cast<uint8_t>(a[i] ^ b[i]);
}
return result;
}
inline void XorWordsInplace(std::array<uint8_t, 4>& a, std::array<uint8_t, 4>b)
{
for (size_t i = 0; i < 4; i++)
a[i] ^= b[i];
}
inline constexpr std::array<uint8_t, 4> Rcon(size_t n)
{
std::array<uint8_t, 4> result{};
unsigned char c = 1;
for (size_t i = 0; i < n - 1; i++)
{
c = xtime(c);
}
result[0] = c;
result[1] = result[2] = result[3] = 0;
return result;
}
template <size_t keyLength>
inline consteval RoundKey<keyLength> keyExpansion(Key<keyLength> key)
{
RoundKey<keyLength> result{};
std::array<uint8_t, 4> temp;
for (size_t i = 0; i < key.size(); i++)
result[i / BlockSize][i % BlockSize] = key[i];
for (size_t i = key.size(); i < BlockSize * result.size(); i += 4) {
temp[0] = result[(i - 4 + 0) / BlockSize][(i - 4 + 0) % BlockSize];
temp[1] = result[(i - 4 + 1) / BlockSize][(i - 4 + 1) % BlockSize];
temp[2] = result[(i - 4 + 2) / BlockSize][(i - 4 + 2) % BlockSize];
temp[3] = result[(i - 4 + 3) / BlockSize][(i - 4 + 3) % BlockSize];
if (i / 4 % parameters<keyLength>::Nk == 0)
{
temp = XorWords(SubWord(RotWord(temp)), Rcon(i / (parameters<keyLength>::Nk * 4)));
}
else if (parameters<keyLength>::Nk > 6 && i / 4 % parameters<keyLength>::Nk == 4)
{
temp = SubWord(temp);
}
result[(i + 0) / BlockSize][(i + 0) % BlockSize] =
static_cast<uint8_t>(
result[(i + 0 - 4 * parameters<keyLength>::Nk) / BlockSize][(i + 0 - 4 * parameters<keyLength>::Nk) % BlockSize] ^ temp[0]
);
result[(i + 1) / BlockSize][(i + 1) % BlockSize] =
static_cast<uint8_t>(
result[(i + 1 - 4 * parameters<keyLength>::Nk) / BlockSize][(i + 1 - 4 * parameters<keyLength>::Nk) % BlockSize] ^ temp[1]
);
result[(i + 2) / BlockSize][(i + 2) % BlockSize] =
static_cast<uint8_t>(
result[(i + 2 - 4 * parameters<keyLength>::Nk) / BlockSize][(i + 2 - 4 * parameters<keyLength>::Nk) % BlockSize] ^ temp[2]
);
result[(i + 3) / BlockSize][(i + 3) % BlockSize] =
static_cast<uint8_t>(
result[(i + 3 - 4 * parameters<keyLength>::Nk) / BlockSize][(i + 3 - 4 * parameters<keyLength>::Nk) % BlockSize] ^ temp[3]
);
}
return result;
}
template <size_t keyLength>
inline void keyExpansionRuntime(Key<keyLength> key, RoundKey<keyLength>& roundKey)
{
std::array<uint8_t, 4> temp;
for (size_t i = 0; i < key.size(); i++)
roundKey[i / BlockSize][i % BlockSize] = key[i];
for (size_t i = key.size(); i < BlockSize * roundKey.size(); i += 4) {
temp[0] = roundKey[(i - 4 + 0) / BlockSize][(i - 4 + 0) % BlockSize];
temp[1] = roundKey[(i - 4 + 1) / BlockSize][(i - 4 + 1) % BlockSize];
temp[2] = roundKey[(i - 4 + 2) / BlockSize][(i - 4 + 2) % BlockSize];
temp[3] = roundKey[(i - 4 + 3) / BlockSize][(i - 4 + 3) % BlockSize];
if (i / 4 % parameters<keyLength>::Nk == 0)
{
RotWordInplace(temp);
SubWordInplace(temp);
XorWordsInplace(temp, Rcon(i / (parameters<keyLength>::Nk * 4)));
}
else if (parameters<keyLength>::Nk > 6 && i / 4 % parameters<keyLength>::Nk == 4)
{
SubWordInplace(temp);
}
roundKey[(i + 0) / BlockSize][(i + 0) % BlockSize] =
static_cast<uint8_t>(roundKey[(i + 0 - 4 * parameters<keyLength>::Nk) / BlockSize][(i + 0 - 4 * parameters<keyLength>::Nk) % BlockSize] ^ temp[0]);
roundKey[(i + 1) / BlockSize][(i + 1) % BlockSize] =
static_cast<uint8_t>(roundKey[(i + 1 - 4 * parameters<keyLength>::Nk) / BlockSize][(i + 1 - 4 * parameters<keyLength>::Nk) % BlockSize] ^ temp[1]);
roundKey[(i + 2) / BlockSize][(i + 2) % BlockSize] =
static_cast<uint8_t>(roundKey[(i + 2 - 4 * parameters<keyLength>::Nk) / BlockSize][(i + 2 - 4 * parameters<keyLength>::Nk) % BlockSize] ^ temp[2]);
roundKey[(i + 3) / BlockSize][(i + 3) % BlockSize] =
static_cast<uint8_t>(roundKey[(i + 3 - 4 * parameters<keyLength>::Nk) / BlockSize][(i + 3 - 4 * parameters<keyLength>::Nk) % BlockSize] ^ temp[3]);
}
}
template <size_t inputLen>
inline consteval std::array<std::array<uint8_t, BlockSize>, (inputLen - 1) / BlockSize + 1>
alignInput(std::array<uint8_t, inputLen> input)
{
std::array<std::array<uint8_t, BlockSize>, (inputLen - 1) / BlockSize + 1> result{};
for (size_t i = 0; i < inputLen / BlockSize; i++)
for (size_t j = 0; j < BlockSize; j++)
result[i][j] = input[i * BlockSize + j];
if constexpr (inputLen % BlockSize != 0) {
for (size_t j = 0; j < inputLen % BlockSize; j++) {
result[inputLen / BlockSize][j] = input[inputLen - inputLen % BlockSize + j];
}
for (size_t j = inputLen % BlockSize; j < BlockSize; j++)
result[inputLen / BlockSize][j] = 0;
}
return result;
}
template <size_t keyLength, size_t inputLen>
inline consteval auto encryptCBC(std::array<uint8_t, inputLen> input, Key<keyLength> key, Block iv) {
auto aligned_input = alignInput(input);
decltype(aligned_input) result{};
for (size_t i = 0; i < aligned_input.size(); i++) {
result[i] = aligned_input[i];
}
auto roundKeys = keyExpansion<keyLength>(key);
auto block = iv;
for (size_t i = 0; i < aligned_input.size(); i++)
{
block = xorBlock(aligned_input[i], block);
result[i] = encryptBlock<256>(block, roundKeys);
block = result[i];
}
return result;
}
template <size_t keyLength, size_t inputLen>
inline void DecryptCBC(
std::array<std::array<uint8_t, BlockSize>, (inputLen - 1) / BlockSize + 1> encrypted,
std::array<uint8_t, inputLen>& output,
Block iv,
Key<keyLength> key
)
{
RoundKey<keyLength> roundKey;
keyExpansionRuntime<keyLength>(key, roundKey);
auto block = iv;
for (size_t i = 0; i < encrypted.size(); i++)
{
DecryptBlock<keyLength>(encrypted[i], roundKey, output.data() + i * BlockSize);
xorBlockInplace(output.data() + i * BlockSize, block);
block = encrypted[i];
}
}
template<uint64_t id>
class randomBlock {
inline static constexpr uint64_t id2 = id + 0x0101010101010101ull;
inline static constexpr std::array<uint8_t, 16> plain = {
static_cast<uint8_t>(id),
static_cast<uint8_t>(id / 256),
static_cast<uint8_t>(id / 256 / 256),
static_cast<uint8_t>(id / 256 / 256 / 256),
static_cast<uint8_t>(id / 256 / 256 / 256 / 256),
static_cast<uint8_t>(id / 256 / 256 / 256 / 256 / 256),
static_cast<uint8_t>(id / 256 / 256 / 256 / 256 / 256 / 256),
static_cast<uint8_t>(id / 256 / 256 / 256 / 256 / 256 / 256 / 256),
static_cast<uint8_t>(id2),
static_cast<uint8_t>(id2 / 256),
static_cast<uint8_t>(id2 / 256 / 256),
static_cast<uint8_t>(id2 / 256 / 256 / 256),
static_cast<uint8_t>(id2 / 256 / 256 / 256 / 256),
static_cast<uint8_t>(id2 / 256 / 256 / 256 / 256 / 256),
static_cast<uint8_t>(id2 / 256 / 256 / 256 / 256 / 256 / 256),
static_cast<uint8_t>(id2 / 256 / 256 / 256 / 256 / 256 / 256 / 256),
};
inline static constexpr uint64_t id3 = id + 0x0110011001100110ull;
inline static constexpr uint64_t id4 = id + 0x1100010111000101ull;
inline static constexpr std::array<uint8_t, 32> rKey = {
static_cast<uint8_t>(id3),
static_cast<uint8_t>(id3 / 256),
static_cast<uint8_t>(id3 / 256 / 256),
static_cast<uint8_t>(id3 / 256 / 256 / 256),
static_cast<uint8_t>(id3 / 256 / 256 / 256 / 256),
static_cast<uint8_t>(id3 / 256 / 256 / 256 / 256 / 256),
static_cast<uint8_t>(id3 / 256 / 256 / 256 / 256 / 256 / 256),
static_cast<uint8_t>(id3 / 256 / 256 / 256 / 256 / 256 / 256 / 256),
static_cast<uint8_t>(id3 / 256 / 256 / 256 / 256 / 256 / 256 / 256),
static_cast<uint8_t>(id3 / 256 / 256 / 256 / 256 / 256 / 256),
static_cast<uint8_t>(id3 / 256 / 256 / 256 / 256 / 256),
static_cast<uint8_t>(id3 / 256 / 256 / 256 / 256),
static_cast<uint8_t>(id3 / 256 / 256 / 256),
static_cast<uint8_t>(id3 / 256 / 256),
static_cast<uint8_t>(id3 / 256),
static_cast<uint8_t>(id3),
static_cast<uint8_t>(id4),
static_cast<uint8_t>(id4 / 256),
static_cast<uint8_t>(id4 / 256 / 256),
static_cast<uint8_t>(id4 / 256 / 256 / 256),
static_cast<uint8_t>(id4 / 256 / 256 / 256 / 256),
static_cast<uint8_t>(id4 / 256 / 256 / 256 / 256 / 256),
static_cast<uint8_t>(id4 / 256 / 256 / 256 / 256 / 256 / 256),
static_cast<uint8_t>(id4 / 256 / 256 / 256 / 256 / 256 / 256 / 256),
static_cast<uint8_t>(id4 / 256 / 256 / 256 / 256 / 256 / 256 / 256),
static_cast<uint8_t>(id4 / 256 / 256 / 256 / 256 / 256 / 256),
static_cast<uint8_t>(id4 / 256 / 256 / 256 / 256 / 256),
static_cast<uint8_t>(id4 / 256 / 256 / 256 / 256),
static_cast<uint8_t>(id4 / 256 / 256 / 256),
static_cast<uint8_t>(id4 / 256 / 256),
static_cast<uint8_t>(id4 / 256),
static_cast<uint8_t>(id4)
};
public:
constexpr static std::array<uint8_t, 16> data = encryptCBC<256, 16>(plain, rKey, plain)[0];
};
inline consteval uint64_t u64_from_block(std::array<uint8_t, 16> x) {
uint64_t tmp = 0;
for (size_t i = 0; i < 8; i++) {
tmp |= static_cast<uint64_t>(x[i] ^ x[(i * 3) % 8 + 8]) << (i * 8);
}
return tmp;
}
template<uint64_t id, size_t N>
inline consteval std::array<uint8_t, 16 * N> genRandomBlocks() {
std::array<uint8_t, 16 * N> result{};
constexpr std::array<uint8_t, 16> block1 = randomBlock<id>::data;
if constexpr (N == 1) {
result = block1;
}
else {
constexpr std::array<uint8_t, 16> block2 = randomBlock<id ^ 0x1111111100000000ull>::data;
constexpr uint64_t next_id = u64_from_block(block2);
constexpr auto left = genRandomBlocks<next_id, N - 1>();
for (size_t i = 0; i < 16 * (N - 1); i++) {
result[i] = left[i];
}
for (size_t i = 0; i < 16; i++) {
result[i + 16 * (N - 1)] = block1[i];
}
}
return result;
}
template<uint64_t id, size_t N>
class randomBlocks {
public:
constexpr static std::array<uint8_t, 16 * N> data = genRandomBlocks<id, N>();
};
template <typename T, size_t N>
class ProtectedMemory {
public:
inline ProtectedMemory() {};
std::array<uint8_t, sizeof(T)* N> plain;
OBFUSCATOR_INLINE const T* data() {
return reinterpret_cast<const T*>(plain.data());
}
OBFUSCATOR_INLINE void clear() {
memset(plain.data(), 0, plain.size());
}
inline ~ProtectedMemory() {
clear();
}
};
template<uint64_t seed, size_t N>
class ProtectedResource {
private:
ProtectedResource& operator=(const ProtectedResource& other) = delete;
public:
inline consteval ProtectedResource(const ProtectedResource<seed, N>& other) :encrypted(other.encrypted)
{}
const std::array<std::array<uint8_t, BlockSize>, (N - 1) / BlockSize + 1> encrypted;
constexpr static std::array<uint8_t, 32> key = randomBlocks<seed, 2>::data;
constexpr static std::array<uint8_t, 16> iv = randomBlocks<
u64_from_block(randomBlock<seed ^ 0x0011011011001001ull>::data)
, 1>::data;
inline consteval ProtectedResource(std::array<uint8_t, N> data) :
encrypted(encryptCBC<256, N>(data, key, iv))
{}
enum { size = N };
};
template<uint64_t seed, typename T, size_t N>
OBFUSCATOR_INLINE ProtectedMemory<T, N> decryptResource(const ProtectedResource<seed, sizeof(T)* N>& x) {
ProtectedMemory<T, N> result;
DecryptCBC<256, sizeof(T)* N>(x.encrypted, result.plain, x.iv, x.key);
return result;
}
template <typename T, size_t N>
inline consteval std::array<uint8_t, sizeof(T)* N> convert(std::array<T, N > x) {
struct {
uint8_t data[sizeof(T) * N];
} target;
struct {
T data[N];
} source;
for (size_t i = 0; i < N; i++)
source.data[i] = x[i];
target = std::bit_cast<decltype(target)>(source);
std::array<uint8_t, sizeof(T)* N> result{};
for (size_t i = 0; i < sizeof(T) * N; i++)
result[i] = target.data[i];
return result;
};
template <typename T, size_t N>
inline consteval std::array<T, N> make_array(const T data[N]) {
std::array<T, N> result{};
for (size_t i = 0; i < N; i++)
result[i] = data[i];
return result;
}
template <uint64_t seed, typename T, size_t N>
class ProtectedArray :public ProtectedResource<seed, sizeof(T)* N> {
private:
ProtectedArray& operator=(const ProtectedArray<seed, T, N>& other) = delete;
public:
inline consteval ProtectedArray(const ProtectedArray<seed, T, N>& other) = delete;
inline consteval ProtectedArray(std::array<T, N> data) :
ProtectedResource<seed, sizeof(T)* N>(convert(data)) {}
inline consteval ProtectedArray(const T data[N]) : ProtectedArray(make_array<T, N>(data))
{}
inline ProtectedMemory<T, N> decrypt()const {
return decryptResource<seed, T, N>(*this);
}
};
template<size_t filenameSize>
consteval uint64_t genRandom(uint64_t line, const char* filename, const char* date, const char* time) {
std::array<uint8_t, sizeof(uint64_t) + 8 + 11 + filenameSize> input;
for (size_t i = 0; i < sizeof(uint64_t); i++)
input[i] = static_cast<uint8_t>(line >> (i * 8));
for (size_t i = 0; i < filenameSize; i++)
input[i + sizeof(uint64_t)] = static_cast<uint8_t>(filename[i]);
for (size_t i = 0; i < 11; i++)
input[i + sizeof(uint64_t) + filenameSize] = static_cast<uint8_t>(date[i]);
for (size_t i = 0; i < 8; i++)
input[i + sizeof(uint64_t) + filenameSize + 11] = static_cast<uint8_t>(time[i]);
Block iv;
Key<256> key;
for (size_t i = 0; i < iv.size(); i++)
iv[i] = 0;
for (size_t i = 0; i < key.size(); i++)
key[i] = 0;
for (size_t i = 0; i < input.size(); i++) {
iv[i % iv.size()] ^= input[i];
key[i % key.size()] ^= input[i];
}
return u64_from_block(encryptCBC<256, input.size()>(input, key, iv)[0]);
}
consteval int c_strlen(const char* str)
{
return *str ? 1 + c_strlen(str + 1) : 0;
}
}
using Impl::ProtectedMemory;
using Impl::ProtectedResource;
using Impl::ProtectedArray;
#undef OBFUSCATOR_INLINE
#ifndef OBFUSCATOR_NO_MACROS
#define RANDOM_SEED (SimpleObfuscator::Impl::genRandom<SimpleObfuscator::Impl::c_strlen(__FILE__)>(__LINE__,__FILE__,__DATE__,__TIME__))
#define DECLARE_PROTECTED(type,count,name,...) constexpr SimpleObfuscator::ProtectedArray<RANDOM_SEED,type,count> name(__VA_ARGS__);
#define PROTECTED(type,count,...) SimpleObfuscator::ProtectedArray<RANDOM_SEED,type,count>(__VA_ARGS__).decrypt().data()
#define PROTECTED_STRING(...) PROTECTED(char,SimpleObfuscator::Impl::c_strlen(__VA_ARGS__),__VA_ARGS__)
#endif
};